MAST20005/MAST90058 課業(yè)解析

題意:

概率論與數(shù)理統(tǒng)計中的幾個小題

解析:

問題1:使用R語言統(tǒng)計數(shù)據(jù)生成圖像;假設(shè)服從正態(tài)分布芽世,計算參數(shù)的極大似然估計斜脂;繪制密度直方圖;繪制QQ圖

一般求解極大似然估計步驟寫出似然函數(shù)燕差,再對似然函數(shù)取對數(shù)并整理遭笋,然后求導(dǎo)數(shù),最后解似然方程 徒探。

問題2:按照給出的離散隨機(jī)變量計算:a.計算期望和方差瓦呼、使用矩估計計算θ和計算標(biāo)準(zhǔn)差,b.求解F1、F2央串、F3的似然函數(shù)磨澡、最大似然估計和θ估計

離散隨機(jī)變量的期望公式為E(X)=\sum_{k=1}^nX_{k} P(X_{k} ),方差公式為var(X)=E(X^2)-(E(X))^2质和,矩估計思想就是如果總體中有K個未知參數(shù)稳摄,可以用前 K階樣本矩估計相應(yīng)的前k階總體矩,然后利用未知參數(shù)與總體矩的函數(shù)關(guān)系饲宿,求出參數(shù)的估計量

問題5:(a):計算四個估計中哪些是μ的無偏估計厦酬;(b):無偏估計的最小方差

按照無偏估計定義計算,估計量的數(shù)學(xué)期望等于被估計參數(shù)的真實(shí)值瘫想,無偏估計的最小方差mse(\hat{\theta } )=E[(\hat{\theta } -\theta )^2]

涉及知識點(diǎn):

R仗阅,隨機(jī)變量,希望與方差国夜,矩估計减噪,極大似然估計,無偏估計

更多可加微信撩騷

MAST20005/MAST90058: Assignment 1

Due date: 11am, Friday 30 August 2019

Instructions: Questions labelled with ‘(R)’ require use of R. Please provide appropriate R commands and their output, along with sufficient explanation and interpretation of the output to demonstrate your understanding. Such R output should be presented in an integrated form together with your explanations; do not attach them as separate sheets. All other questions should be completed without reference to any R commands or output, except for looking up quantiles of distributions where necessary. Make sure you give enough explanation so your tutor can follow your reasoning if you happen to make a mistake. Please also try to be as succinct as possible. Each assignment will include marks for good presentation and for attempting all problems.

Problems:

1. (R) Let X be a random variable representing distance travelled (in kilometers) until a tire is worn out. The following are 16 observations of X:

41300 40300 43200 41100 39300 42100 42700 41300

38900 41200 44600 42300 40700 43500 39800 40400

(a) Give basic summary statistics for these data and produce a box plot. Briefly comment on center, spread and shape of the distribution.

(b) Assuming a normal distribution, compute maximum likelihood estimates for the parameters.

(c) Draw a density histogram and superimpose a pdf for a normal distribution using the estimated parameters.

(d) Draw a QQ plot to compare the data against the fitted normal distribution. Include a reference line. Comment on the fit of the model to the data.

2. A discrete random variable X has the following pmf:

A random sample of size n = 20 produced the following observations:

1, 1, 2, 3, 1, 2, 1, 3, 2, 2, 2, 1, 3, 1, 3, 1, 1, 2, 1, 2.

(a) i. Find E(X) and var(X).

ii. Find the method of moments estimator and estimate of θ.

iii. Find the standard error of this estimate.

(b) Let F1, F2 and F3 denote the sample frequencies of 1, 2 and 3, respectively.

i. Find the likelihood function in terms of F1, F2 and F3.

ii. Find that the maximum likelihood estimator and estimate of θ.

iii. Find the variance of this estimator.

(Hint: write the estimator in terms of the sample mean.)

3. Let X ~ Unif(0, θ), a uniform distribution with an unknown endpoint θ.

(a) Suppose we have a single observation on X.

i. Find the method of moments estimator (MME) for θ and derive its mean and variance.

ii. Find the maximum likelihood estimator (MLE) for θ and derive its mean and variance.

(b) The mean square error (MSE) of an estimator is defined as MSE(\hat{\theta } )=E[(\hat{\theta}-\theta)^2]

i. Let bias\hat{(\theta )} =E\hat{(\theta )} -\theta .Show that车吹,MSE\hat{(\theta )} =var(\hat{\theta })+bias(\hat{\theta } ) ^2

ii. Compare the MME and MLE from above in terms of their mean square errors.

iii. Find an estimator with smaller MSE than either of the above estimators.

(c) Suppose we have a random sample of size n from X.

i. Find the MME and derive its mean, variance and MSE.

ii. Find the MLE and derive its mean, variance and MSE.

iii. Consider the estimator a\hat{\theta } where \hat{\theta } is the MLE. Find a that minimises the MSE.Some information that might be useful:

E(X_{(1)})=\frac{\theta }{n+1} ,E(X_{(1)}^2)=\frac{2\theta ^2}{(n+1)(n+2)} ,E(X_{(n)})=\frac{n\theta }{n+1} ,E(X_{(n)}^2)=\frac{n\theta ^2}{n+2}

4. Let X1, . . . , Xn be a random sample from the lognormal distribution, Lognormal(μ, λ),whose pdf is:

f(x|\mu ,\lambda )=\frac{1}{x\sqrt{2\pi \lambda } } exp[-\frac{(\ln x-\mu )^2 }{2\lambda } ],x>0

(a) Show that the MLE of μ and λ are?\hat{\mu } =\frac{1}{n} \sum\nolimits_{i=1}^n\ln X_{i} and?\hat{\lambda } =\frac{1}{n} \sum\nolimits_{i=1}^n(\ln X_{i}-\hat{\mu }  )^2

(b) It is known that ln Xi ~ N(μ, λ). Derive a 100 · (1 ? α)% CI for λ.

(c) (R) Consider the following dataset:

0.27, 3.30, 4.58, 2.61, 0.38, 3.77, 1.11, 1.15, 4.11, 2.10,

0.07, 1.74, 2.11, 12.79, 1.85, 0.30, 0.34, 1.31, 0.14, 0.74

i. Assuming a lognormal distribution is an appropriate model for these data, compute the maximum likelihood estimate of λ and give a 95% CI.

ii. Draw a QQ plot to compare these data to the fitted lognormal distribution, Lognormal(?μ, λ?). Is this model appropriate for these data?

Hint: Quantiles of the lognormal distribution can be computed using the qlnorm() function.

5. Let X_{1} , X_{2} , X_{3} ,?X_{4} be iid rvs with E(Xi) = μ and var(Xi) =?\sigma ^2 > 0, for i = 1, 2, 3, 4.

Consider the following four estimators of μ:

T1 =\frac{1}{3} (X_{1} ?+X_{2} ) + \frac{1}{6} (X_{3} + X_{4} ) 筹裕,T2=\frac{1}{6} (X_{1} +2X_{2} +3X_{3} +4X_{4} )

T3=\frac{1}{4} (X_{1} +X_{2} +X_{3} +X_{4} ),T4=\frac{1}{3} (X_{1} +X_{2} +X_{3} )+\frac{1}{4} X_{4} ^2

(a) Which of these estimates are unbiased? Show your working.

(b) Among the unbiased estimators, which one has the smallest variance

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末窄驹,一起剝皮案震驚了整個濱河市朝卒,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌馒吴,老刑警劉巖扎运,帶你破解...
    沈念sama閱讀 217,084評論 6 503
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異饮戳,居然都是意外死亡豪治,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,623評論 3 392
  • 文/潘曉璐 我一進(jìn)店門扯罐,熙熙樓的掌柜王于貴愁眉苦臉地迎上來负拟,“玉大人,你說我怎么就攤上這事歹河⊙谡悖” “怎么了?”我有些...
    開封第一講書人閱讀 163,450評論 0 353
  • 文/不壞的土叔 我叫張陵秸歧,是天一觀的道長厨姚。 經(jīng)常有香客問我,道長键菱,這世上最難降的妖魔是什么谬墙? 我笑而不...
    開封第一講書人閱讀 58,322評論 1 293
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上拭抬,老公的妹妹穿的比我還像新娘部默。我一直安慰自己,他們只是感情好造虎,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,370評論 6 390
  • 文/花漫 我一把揭開白布傅蹂。 她就那樣靜靜地躺著,像睡著了一般算凿。 火紅的嫁衣襯著肌膚如雪份蝴。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,274評論 1 300
  • 那天氓轰,我揣著相機(jī)與錄音搞乏,去河邊找鬼。 笑死戒努,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的镐躲。 我是一名探鬼主播储玫,決...
    沈念sama閱讀 40,126評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼萤皂!你這毒婦竟也來了撒穷?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 38,980評論 0 275
  • 序言:老撾萬榮一對情侶失蹤裆熙,失蹤者是張志新(化名)和其女友劉穎端礼,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體入录,經(jīng)...
    沈念sama閱讀 45,414評論 1 313
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡蛤奥,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,599評論 3 334
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了僚稿。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片凡桥。...
    茶點(diǎn)故事閱讀 39,773評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖蚀同,靈堂內(nèi)的尸體忽然破棺而出缅刽,到底是詐尸還是另有隱情,我是刑警寧澤蠢络,帶...
    沈念sama閱讀 35,470評論 5 344
  • 正文 年R本政府宣布衰猛,位于F島的核電站,受9級特大地震影響刹孔,放射性物質(zhì)發(fā)生泄漏啡省。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,080評論 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望冕杠。 院中可真熱鬧微姊,春花似錦、人聲如沸分预。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,713評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽笼痹。三九已至配喳,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間凳干,已是汗流浹背晴裹。 一陣腳步聲響...
    開封第一講書人閱讀 32,852評論 1 269
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留救赐,地道東北人涧团。 一個月前我還...
    沈念sama閱讀 47,865評論 2 370
  • 正文 我出身青樓,卻偏偏與公主長得像经磅,于是被迫代替她去往敵國和親泌绣。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,689評論 2 354

推薦閱讀更多精彩內(nèi)容