Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
Solution1:二分查找
思路: 從右上點(row=0, col=w-1)開始鸵荠,以這點為中心的第一行和最后一列的整體是遞增的衰伯,則可以通過二分查找去掉一行(row++)或一列(col--)穷躁,以更新的右上點繼續(xù)此過程叁征。
Time Complexity: O(m+n) Space Complexity: O(1)
Solution2:Divide and Conquer
reference: https://discuss.leetcode.com/topic/33240/java-an-easy-to-understand-divide-and-conquer-method
思路:
zone 1 zone 2
* * * * | * * * *
* * * * | * * * *
* * * * | * * * *
* * * * | * * * *
-----------------------
* * * * | * * * *
* * * * | * * * *
* * * * | * * * *
* * * * | * * * *
zone 3 zone 4
First, we divide the matrix into four quarters as shown below:
We then compare the element in the center of the matrix with the target. There are three possibilities:
center < target. In this case, we discard zone 1 because all elements in zone 1 are less than target.
center > target. In this case, we discard zone 4.
center == target. return true.
Time Complexity: T(nxn) = 3T(n/2 x n/2) => O(3^logN)
Space Complexity: O(logN)
N = n^n
Solution1 Code:
class Solution1 {
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix == null || matrix.length < 1 || matrix[0].length < 1) {
return false;
}
int row = 0;
int col = matrix[0].length - 1;
while(col >= 0 && row <= matrix.length - 1) {
if(target == matrix[row][col]) {
return true;
} else if(target < matrix[row][col]) {
col--;
} else if(target > matrix[row][col]) {
row++;
}
}
return false;
}
}
Solution2 Code:
class Solution2 {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length;
if(m<1) return false;
int n = matrix[0].length;
return searchMatrix(matrix, new int[]{0,0}, new int[]{m-1, n-1}, target);
}
private boolean searchMatrix(int[][] matrix, int[] upperLeft, int[] lowerRight, int target) {
if(upperLeft[0] > lowerRight[0] || upperLeft[1] > lowerRight[1]
|| lowerRight[0] >= matrix.length || lowerRight[1] >= matrix[0].length)
return false;
if(lowerRight[0] - upperLeft[0]==0 && lowerRight[1] - upperLeft[1]==0)
return matrix[upperLeft[0]][upperLeft[1]] == target;
int rowMid = (upperLeft[0] + lowerRight[0]) >> 1;
int colMid = (upperLeft[1] + lowerRight[1]) >> 1;
int diff = matrix[rowMid][colMid] - target;
if(diff > 0) {
return searchMatrix(matrix, upperLeft, new int[]{rowMid, colMid}, target)
|| searchMatrix(matrix, new int[]{upperLeft[0],colMid + 1}, new int[]{rowMid, lowerRight[1]}, target)
|| searchMatrix(matrix, new int[]{rowMid + 1,upperLeft[1]}, new int[]{lowerRight[0], colMid}, target);
}
else if(diff < 0) {
return searchMatrix(matrix, new int[]{upperLeft[0], colMid + 1}, new int[]{rowMid, lowerRight[1]}, target)
|| searchMatrix(matrix, new int[]{rowMid + 1, upperLeft[1]}, new int[]{lowerRight[0], colMid}, target)
|| searchMatrix(matrix, new int[]{rowMid + 1, colMid + 1}, lowerRight, target);
}
else return true;
}
}