Pre-info of Spark

What is Apache Spark?

Apache Spark is a cluster computing platform designed to be fast and general-purpose.

On the speed side, Spark extends the popular MapReduce model to efficiently support more types of computations, including interactive queries and stream processing. One of the main features Spark offers for speed is the ability to run computations in memory, but the system is also more efficient than MapReduce for complex applications running on disk.

Apache Spark 是一款旨在快速通用的集群計(jì)算平臺(tái),在速度方面,擴(kuò)展了流行的MapReduce模型,以有效支持更多類型的計(jì)算,包括交互式查詢和流處理铃剔。能夠在內(nèi)存中運(yùn)行計(jì)算灭翔,但是對(duì)于在磁盤(pán)上運(yùn)行的復(fù)雜應(yīng)用程序瓷患,該系統(tǒng)也比MapReduce更高效铃肯。

The Spark project contains multiple closely integrated components. At its core, Spark is a “computational engine” that is responsible for scheduling, distributing, and mon‐itoring applications consisting of many computational tasks across many worker machines, or a computing cluster. Because the core engine of Spark is both fast and general-purpose, it powers multiple higher-level components specialized for various workloads, such as SQL or machine learning. These components are designed to interoperate closely, letting you combine them like libraries in a software project.

Spark項(xiàng)目包含多個(gè)緊密集成的組件己沛。其核心在于疤孕,Spark是一個(gè)“計(jì)算引擎”商乎,負(fù)責(zé)在多個(gè)工作機(jī)器或計(jì)算集群中安排,分發(fā)和監(jiān)視由許多計(jì)算任務(wù)組成的應(yīng)用程序祭阀。由于Spark的核心引擎既快速又通用鹉戚,因此可以為多種工作負(fù)載(如SQL或機(jī)器學(xué)習(xí))提供專門(mén)的多個(gè)高級(jí)組件鲜戒。這些組件的設(shè)計(jì)是為了與軟件項(xiàng)目中的library進(jìn)行緊密的交互操作。

We should learn the characteristics and benefits of its tight integration. Specific content, you can see "learning spark".
我們應(yīng)該學(xué)習(xí)它的緊密整合的特點(diǎn)和好處抹凳。具體的內(nèi)容遏餐,可以看看《learning spark》

Each of Spark’s components

 Each of Spark’s components
Each of Spark’s components

Spark Core

Spark core includes the basic functions of Spark, including for task scheduling, memory management, fault recovery, and storage system interaction components. Spark Core also defines the Flexible Distributed Data Set (RDD) API. He provides a number of APIs for building and manipulating collections.

Spark core 包含Spark的基本功能,包括用于任務(wù)調(diào)度赢底,內(nèi)存管理失都,故障恢復(fù),與存儲(chǔ)系統(tǒng)交互的組件幸冻。Spark Core 也是定義彈性分布式數(shù)據(jù)集(RDD)API所在粹庞。他提供了許多用于構(gòu)建和操作集合的API

Spark SQL

Spark SQL is a spark package for handling structured data. It allows data to be queried through SQL. Is a variant of Apache Hive. Combine SQL with complex analysis.

Spark SQL是用于處理結(jié)構(gòu)化數(shù)據(jù)的spark包。它允許通過(guò)SQL查詢數(shù)據(jù)洽损。是Apache Hive的變體庞溜。將SQL與復(fù)雜的分析相結(jié)合。

Spark Streaming

Spark Streaming is a Spark component that can handle real-time streaming data. At the same time, it provides an API for handling data streams that are closely related to the Spark Core RDD API. This is very convenient. And move between applications that store data on memory, on disk, or in real-time access. The same program has fault tolerance, throughput, and scalability as the Spark Core.

Spark Streaming 是一個(gè)Spark組件碑定,可以處理實(shí)時(shí)流數(shù)據(jù)流码。同時(shí),它提供了一個(gè)API用于處理與Spark Core RDD API密切相關(guān)的數(shù)據(jù)流延刘。這是很方便的漫试。而且操作存儲(chǔ)在內(nèi)存,磁盤(pán)上的或者實(shí)時(shí)訪問(wèn)中的數(shù)據(jù)的應(yīng)用程序之間移動(dòng)访娶。與Spark Core有相同程序的容錯(cuò)能力商虐,吞吐量和可擴(kuò)展性。

MLIb

This is a library of common machine learning functions that provide many types of machine learning algorithms, including classification, regression, clustering, and collaborative filtering. It also provides some lower level ML primitives, including gradient descent optimization algorithms. So these methods can be designed to expand the cluster expansion, is not it amazing?

這是一個(gè)通用機(jī)器學(xué)習(xí)功能的庫(kù)崖疤,提供很多類型的機(jī)器學(xué)習(xí)算法,包括分類典勇,回歸劫哼,聚類和協(xié)同過(guò)濾等等。它還提供了一些較低級(jí)別的ML原語(yǔ)割笙,包括梯度下降優(yōu)化算法权烧。所以的這些方法都可以被設(shè)計(jì)為擴(kuò)集群擴(kuò)展,是不是很amazing呢伤溉?

GraphX

GraphX is a library for manipulating graphics and performing graphical parallel computing. It also extends the Spark RDD API, allowing the user to create a directed graph with arbi-trary attributes attached to each vertex and edge. GraphX also provides a variety of operators for manipulating graphics and a library of common graphics algorithms.

Graphx 是用于操作圖形和執(zhí)行圖形并行計(jì)算的庫(kù)般码,它也擴(kuò)展了Spark RDD API,允許使用者創(chuàng)建一個(gè)連接到每個(gè)頂點(diǎn)和邊緣的具有arbi-trary屬性的有向圖乱顾。GraphX還提供了各種用于操作圖形的操作器和一個(gè)常見(jiàn)圖形算法庫(kù)板祝。

Cluster Managers(集群管理器)

Under the engine, Spark is designed to effectively extend from one to thousands of compute nodes. How to achieve and maximize flexibility? So with the cluster manager. Spark can run on a clustered manager, including Hadoop YARN, Apache Mesos, and a simple cluster manager that is included in Spark itself as a separate scheduler. This concept is far from the current far, and so learn to write later, first we just know this concept.

在引擎下,Spark旨在有效地從一個(gè)到數(shù)千個(gè)計(jì)算節(jié)點(diǎn)擴(kuò)展走净。怎么實(shí)現(xiàn)而且最大限度地提升靈活性券时?于是有了集群管理器孤里。Spark可以運(yùn)行在在中集群管理器上,包括Hadoop YARN橘洞,Apache Mesos捌袜,以及包含在Spark本身稱為獨(dú)立調(diào)度程序的簡(jiǎn)單集群管理器。這個(gè)概念離目前有點(diǎn)遠(yuǎn)炸枣,等學(xué)到后面再寫(xiě)虏等,先知道有這個(gè)概念就好。

具體的可以看看Spark的官方文檔适肠。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末霍衫,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子迂猴,更是在濱河造成了極大的恐慌慕淡,老刑警劉巖,帶你破解...
    沈念sama閱讀 212,383評(píng)論 6 493
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件沸毁,死亡現(xiàn)場(chǎng)離奇詭異峰髓,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)息尺,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,522評(píng)論 3 385
  • 文/潘曉璐 我一進(jìn)店門(mén)携兵,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人搂誉,你說(shuō)我怎么就攤上這事徐紧。” “怎么了炭懊?”我有些...
    開(kāi)封第一講書(shū)人閱讀 157,852評(píng)論 0 348
  • 文/不壞的土叔 我叫張陵并级,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我侮腹,道長(zhǎng)嘲碧,這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 56,621評(píng)論 1 284
  • 正文 為了忘掉前任父阻,我火速辦了婚禮愈涩,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘加矛。我一直安慰自己履婉,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,741評(píng)論 6 386
  • 文/花漫 我一把揭開(kāi)白布斟览。 她就那樣靜靜地躺著毁腿,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上狸棍,一...
    開(kāi)封第一講書(shū)人閱讀 49,929評(píng)論 1 290
  • 那天身害,我揣著相機(jī)與錄音,去河邊找鬼草戈。 笑死塌鸯,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的唐片。 我是一名探鬼主播丙猬,決...
    沈念sama閱讀 39,076評(píng)論 3 410
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼费韭!你這毒婦竟也來(lái)了茧球?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 37,803評(píng)論 0 268
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤星持,失蹤者是張志新(化名)和其女友劉穎抢埋,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體督暂,經(jīng)...
    沈念sama閱讀 44,265評(píng)論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡揪垄,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,582評(píng)論 2 327
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了逻翁。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片饥努。...
    茶點(diǎn)故事閱讀 38,716評(píng)論 1 341
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖八回,靈堂內(nèi)的尸體忽然破棺而出酷愧,到底是詐尸還是另有隱情,我是刑警寧澤缠诅,帶...
    沈念sama閱讀 34,395評(píng)論 4 333
  • 正文 年R本政府宣布溶浴,位于F島的核電站,受9級(jí)特大地震影響管引,放射性物質(zhì)發(fā)生泄漏戳葵。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 40,039評(píng)論 3 316
  • 文/蒙蒙 一汉匙、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧生蚁,春花似錦噩翠、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 30,798評(píng)論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至志衣,卻和暖如春屯援,著一層夾襖步出監(jiān)牢的瞬間猛们,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 32,027評(píng)論 1 266
  • 我被黑心中介騙來(lái)泰國(guó)打工狞洋, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留弯淘,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 46,488評(píng)論 2 361
  • 正文 我出身青樓吉懊,卻偏偏與公主長(zhǎng)得像庐橙,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子借嗽,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,612評(píng)論 2 350

推薦閱讀更多精彩內(nèi)容