package com.ctgu.flink.project;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Schema;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.Collector;
import java.util.Random;
public class Flink_Sql_Pv {
public static void main(String[] args) throws Exception {
long start = System.currentTimeMillis();
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(8);
EnvironmentSettings settings = EnvironmentSettings
.newInstance()
.inStreamingMode()
.build();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, settings);
String createSql =
"CREATE TABLE source " +
" (" +
" `userId` BIGINT," +
" `itemId` BIGINT," +
" `categoryId` INT," +
" `behavior` STRING," +
" `ts` BIGINT" +
" )" +
" WITH (" +
" 'connector'='filesystem'," +
" 'format'='csv'," +
" 'csv.field-delimiter'=','," +
" 'path'='data/UserBehavior.csv'" +
" )";
tableEnv.executeSql(createSql);
String userBehavior = "select *, ts * 1000 as `timestamp` from source where behavior = 'pv'";
Table userBehaviorTable = tableEnv.sqlQuery(userBehavior);
DataStream<Row> rowDataStream = tableEnv.toDataStream(userBehaviorTable);
Table source =
tableEnv.fromDataStream(
rowDataStream,
Schema.newBuilder()
.columnByExpression("time_ltz", "TO_TIMESTAMP_LTZ(`timestamp`, 3)")
.watermark("time_ltz", "time_ltz - INTERVAL '5' SECOND")
.build());
tableEnv.createTemporaryView("userBehavior", source);
DataStream<Row> dataStream = tableEnv.toDataStream(source);
DataStream<Tuple2<Long, Long>> sum = dataStream.filter(data -> "pv".equals(data.getField("behavior")))
.map(new MyMapFunction())
.keyBy(data -> data.f0)
.window(TumblingEventTimeWindows.of(Time.hours(1)))
.aggregate(new AverageAggregate(), new MyWindowFunction())
.keyBy(data -> data.f0)
.process(new MyProcessFunction());
sum.print();
env.execute("Table SQL");
System.out.println("耗時: " + (System.currentTimeMillis() - start) / 1000);
}
private static class MyMapFunction
extends RichMapFunction<Row, Tuple2<Integer, Long>>{
@Override
public Tuple2<Integer, Long> map(Row row) throws Exception {
Random random = new Random();
return new Tuple2<>(random.nextInt(10), 1L);
}
}
private static class AverageAggregate
implements AggregateFunction<Tuple2<Integer, Long>, Long, Long> {
@Override
public Long createAccumulator() {
return 0L;
}
@Override
public Long add(Tuple2<Integer, Long> integerLongTuple2, Long aLong) {
return aLong + 1;
}
@Override
public Long getResult(Long aLong) {
return aLong;
}
@Override
public Long merge(Long a, Long b) {
return a + b;
}
}
private static class MyWindowFunction
implements WindowFunction<Long, Tuple2<Long, Long>, Integer, TimeWindow> {
@Override
public void apply(Integer integer,
TimeWindow timeWindow,
Iterable<Long> iterable,
Collector<Tuple2<Long, Long>> collector) throws Exception {
collector.collect(new Tuple2<>(timeWindow.getEnd(), iterable.iterator().next()));
}
}
private static class MyProcessFunction
extends KeyedProcessFunction<Long, Tuple2<Long, Long>, Tuple2<Long, Long>> {
private ValueState<Long> totalCountState;
@Override
public void open(Configuration parameters) throws Exception {
totalCountState = getRuntimeContext().getState(new ValueStateDescriptor<>(
"total-count", Long.class, 0L));
}
@Override
public void processElement(Tuple2<Long, Long> tuple2, Context context, Collector<Tuple2<Long, Long>> collector) throws Exception {
totalCountState.update(totalCountState.value() + tuple2.f1);
context.timerService().registerEventTimeTimer(tuple2.f0 + 1);
}
@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<Tuple2<Long, Long>> out) throws Exception {
Long totalCount = totalCountState.value();
out.collect(new Tuple2<>(ctx.getCurrentKey(), totalCount));
totalCountState.clear();
}
}
}
Flink-5.Flink 隨機key數(shù)據(jù)傾斜
最后編輯于 :
?著作權歸作者所有,轉載或內容合作請聯(lián)系作者
- 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來仅胞,“玉大人每辟,你說我怎么就攤上這事「删桑” “怎么了渠欺?”我有些...
- 文/不壞的土叔 我叫張陵,是天一觀的道長椎眯。 經(jīng)常有香客問我挠将,道長胳岂,這世上最難降的妖魔是什么? 我笑而不...
- 正文 為了忘掉前任舔稀,我火速辦了婚禮乳丰,結果婚禮上,老公的妹妹穿的比我還像新娘内贮。我一直安慰自己产园,他們只是感情好,可當我...
- 文/花漫 我一把揭開白布贺归。 她就那樣靜靜地躺著淆两,像睡著了一般。 火紅的嫁衣襯著肌膚如雪拂酣。 梳的紋絲不亂的頭發(fā)上秋冰,一...
- 文/蒼蘭香墨 我猛地睜開眼饺谬,長吁一口氣:“原來是場噩夢啊……” “哼捂刺!你這毒婦竟也來了?” 一聲冷哼從身側響起募寨,我...
- 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響拇厢,放射性物質發(fā)生泄漏爱谁。R本人自食惡果不足惜,卻給世界環(huán)境...
- 文/蒙蒙 一孝偎、第九天 我趴在偏房一處隱蔽的房頂上張望代箭。 院中可真熱鬧誉己,春花似錦拧簸、人聲如沸组去。這莊子的主人今日做“春日...
- 文/蒼蘭香墨 我抬頭看了看天上的太陽阻塑。三九已至,卻和暖如春果复,著一層夾襖步出監(jiān)牢的瞬間陈莽,已是汗流浹背。 一陣腳步聲響...
推薦閱讀更多精彩內容
- 原理 為數(shù)據(jù)量特別大的Key增加隨機前/后綴曲稼,使得原來Key相同的數(shù)據(jù)變?yōu)镵ey不相同的數(shù)據(jù),從而使傾斜的數(shù)據(jù)集分...
- 在使用reduceByKey湖员,groupByKey算子時贫悄,都是針對PairRDD進行操作,那么破衔,我們就可以Pair...
- 一清女、方案 使用隨機key實現(xiàn)雙重聚合 1钱烟、原理 2晰筛、使用場景 比較適合使用這種方式;join拴袭,咱們通常不會這樣來做...
- 一读第、背景 當采用隨機數(shù)和擴容表進行join解決數(shù)據(jù)傾斜的時候,就代表著拥刻,你的之前的數(shù)據(jù)傾斜的解決方案怜瞒,都沒法使用。...
- 我的一位同學,工作上遇到這么一個問題吴汪,問我怎么解決惠窄。問題是這樣的: “Spark寫 Hive 的時候,有3...