跟我一起學人工智能(二)

跟我一起學人工智能(二)

文 | 小步

上一篇文章里簡單說了下機器學習、深度學習的幾個概念,如果你已經(jīng)看完了上篇文章,還是建議你去搜索下這幾個名詞的權(quán)威解釋,更能加深你的理解狞悲,也使你對這些概念的認識更加嚴謹和規(guī)范~

話不多說,這篇重點說下機器學習重要的兩大模型:線性回歸和邏輯回歸模型妇斤。

學習之前你需要學會如下知識:

函數(shù)(一次函數(shù)摇锋、二次函數(shù)、反比例函數(shù)站超、三角函數(shù)等)荸恕,導數(shù),偏導數(shù)死相,矩陣知識融求。

如果對上述不懂,可以去萬能的b站學習下高數(shù)算撮,線代生宛,離散,也不用全部都學肮柜,用啥學啥就好了~

這篇文章因為涉及很多數(shù)學方面知識陷舅,好多細節(jié)也沒有表述清楚,再加之自己也沒有理解透徹审洞,如果想要學習的話莱睁,還是建議去b站看下ng的視頻,從2-1開始看~

傳送門:https://www.bilibili.com/video/av9912938/#page=6

如有此篇文章有不妥之處预明,還麻煩告知我下缩赛,大家共同進步耙箍!微信公眾號:多一點思考

線性回歸模型

通過一個房子的面積撰糠,房間數(shù)量等等,估算出這個房價是多少辩昆。

通過人均GDP阅酪,國民總收入等預測未來人口自然增長率。

研究用戶的滿意度與產(chǎn)品的顏色汁针,重量术辐,大小等之間的關(guān)系,改善產(chǎn)品施无。

…………

以上每個案例都其實可以用線性回歸模型來解決辉词,它們的特點:

需要先給模型輸入大量的數(shù)據(jù)以及每條數(shù)據(jù)對應的標簽值,如房子的面積猾骡,房間數(shù)量等的矩陣X(房子的面積瑞躺,房間數(shù)量等屬性稱作特征量敷搪,矩陣X稱作訓練集)以及對應的房子價格的矩陣Y(矩陣Y稱作預測集

矩陣X內(nèi)每個元素的上標表示第幾條數(shù)據(jù),下標表示第幾個特征量幢哨,如X上標2赡勘,下標3,表示訓練集的第2條的第3個特征量捞镰。

矩陣Y對應訓練集的每行的結(jié)果值闸与。

有點迷糊?拿預測房價舉例子岸售,矩陣X的每行僅有兩個特征量践樱,房子面積和房間數(shù)量,矩陣Y每一行對應矩陣X的每一行特征量的房價冰评。

線性回歸就是通過矩陣X映胁,Y和算法得到數(shù)據(jù)的一般規(guī)律進行預測~

下面先說下回歸算法不得不提的三個概念:(這三個函數(shù)我找了好久權(quán)威概念,還是沒找到~只好根據(jù)自己的理解說下)

假設(shè)函數(shù):這個函數(shù)可以是一元一次函數(shù)甲雅,二元一次函數(shù)等等解孙,可以理解為用來擬合數(shù)據(jù)的函數(shù)。

代價函數(shù):用假設(shè)函數(shù)擬合數(shù)據(jù)時產(chǎn)生的代價抛人。

優(yōu)化目標:確認最優(yōu)解的函數(shù)弛姜。

我們先拿只有一個特征量的訓練集來說下線性回歸模型算法,數(shù)據(jù)表如下:

對應的散點圖如下:

從散點圖上來看妖枚,我們可以用 h (Θ) ?= Θ0+ Θ1 X 來作假設(shè)函數(shù)(當然也可以用二次函數(shù)廷臼,后面會提到,先這么認為)

代價函數(shù):

優(yōu)化目標:

我們要做的就是求得使J(Θ0绝页,Θ1)最熊獭(即代價最小,最能擬合數(shù)據(jù))的Θ0续誉,Θ1莱没,這就又引出一個概念,梯度下降算法:

關(guān)于梯度下降的一個直觀解釋:我們在大山(J(Θ0酷鸦,Θ1)函數(shù))的某個位置饰躲,打算走到山底,于是決定走一步算一步臼隔,每走一步嘹裂,就計算該位置的梯度(梯度是函數(shù)在該點下降最快的方向),沿著梯度的方向摔握,也就是下山最快的方向走一步寄狼,這樣一步一步走下去就可以快速得到達山腳下,當然還可能走到一個山谷的最低點氨淌。

這里需要注意的一點是泊愧,如果學習速率太小狡逢,則需要進行多次迭代才能到達最低點,學習速率過大拼卵,就有可能越過最低點奢浑。我們可以通過指定多個學習速率值,來選擇最合適的那個腋腮。

在算法中雀彼,通過做自動收斂測試來檢測是否得到了最低點的值,即?J(Θ)< β 則可認為已經(jīng)收斂即寡。

通過上面這幾個式子徊哑,我們就可以得出最能擬合數(shù)據(jù)的Θ0,Θ1的值聪富,最重要的是倔毙,算法是可以用python代碼寫出來的~

上面的例子其實僅僅是對于一個特征量的情況下所說的讳侨,那如果多個特征量怎么辦呢?

我們改下假設(shè)函數(shù):

對于每條數(shù)據(jù)添加一個恒為1的X0(對于整體不影響),這樣我們就可以將假設(shè)函數(shù)寫成兩個矩陣相乘的形式葡缰。X1镀首,X2……Xn分別表示特征量1,2……n的值习绢。

代價函數(shù)以及梯度下降算法:

這里梯度下降算法中將求導后的結(jié)果寫了出來蝎土。

上面是多個特征量的情況,如果我要讓一個二次/三次的函數(shù)來做假設(shè)函數(shù)怎么辦阵面?

對于這種情況的處理轻局,可以直接將特征量的值N方帶入,比如:

到這里線性回歸模型已經(jīng)差不多了样刷。

為了提升梯度下降算法的性能仑扑,我們其實提前還需要對訓練集進行優(yōu)化,有個專業(yè)名詞叫特征縮放置鼻。

用(該特征量的值 - 該特征量集合的均值)/(該特征量集合中最大值 - 該特征量集合中最小值)來優(yōu)化訓練集镇饮,從而使梯度下降算法效率更高。

邏輯回歸模型

預測一個用戶是否點擊特定的商品

判斷用戶的性別

判斷用戶是否購買給定的類別商品

判斷一個腫瘤是惡性的還是良性的

…………

以上其實是邏輯回歸中簡單的二分類問題~下面是實現(xiàn)的具體算法沃疮。(以二分類舉例盒让,預測集只有0,1兩個取值)

線性回歸的結(jié)果輸出是一個連續(xù)值梅肤,而值的范圍是無法被限定的司蔬,那我們有沒有辦法將結(jié)果映射成(0,1)之間的概率值呢?于是我們找到了一個神奇的sigmoid函數(shù)姨蝴,詳見下面的假設(shè)函數(shù)h(X)俊啼。

新定義的代價函數(shù)J(Θ),如果y=1左医,h(x)越接近于1授帕,J(Θ)越小即代價越小同木,反之,h(x)越接近于0跛十,J(Θ)越大即代價越大彤路。如果y=0,芥映,h(x)越接近于1洲尊,J(Θ)越大即代價越大,反之奈偏,h(x)越接近于0坞嘀,J(Θ)越小即代價越小。(可以結(jié)合函數(shù)圖像來具體分析)

梯度下降算法不變惊来。

多分類問題以后再歸納總結(jié)~

從前只是覺得數(shù)學只有考上上才能派上用場丽涩,沒想到學好數(shù)學還能干這么多事情~后悔當初沒好好學數(shù)學呀。

下篇文章不出意外的話裁蚁,會出一篇python基本語法的文章矢渊,敬請期待~

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市枉证,隨后出現(xiàn)的幾起案子昆淡,更是在濱河造成了極大的恐慌,老刑警劉巖刽严,帶你破解...
    沈念sama閱讀 211,884評論 6 492
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件昂灵,死亡現(xiàn)場離奇詭異,居然都是意外死亡舞萄,警方通過查閱死者的電腦和手機眨补,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,347評論 3 385
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來倒脓,“玉大人撑螺,你說我怎么就攤上這事∑槠” “怎么了甘晤?”我有些...
    開封第一講書人閱讀 157,435評論 0 348
  • 文/不壞的土叔 我叫張陵,是天一觀的道長饲做。 經(jīng)常有香客問我线婚,道長,這世上最難降的妖魔是什么盆均? 我笑而不...
    開封第一講書人閱讀 56,509評論 1 284
  • 正文 為了忘掉前任塞弊,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘游沿。我一直安慰自己饰抒,他們只是感情好,可當我...
    茶點故事閱讀 65,611評論 6 386
  • 文/花漫 我一把揭開白布诀黍。 她就那樣靜靜地躺著袋坑,像睡著了一般。 火紅的嫁衣襯著肌膚如雪眯勾。 梳的紋絲不亂的頭發(fā)上咒彤,一...
    開封第一講書人閱讀 49,837評論 1 290
  • 那天镶柱,我揣著相機與錄音,去河邊找鬼。 笑死输吏,一個胖子當著我的面吹牛,可吹牛的內(nèi)容都是我干的它浅。 我是一名探鬼主播,決...
    沈念sama閱讀 38,987評論 3 408
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼恨胚!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 37,730評論 0 267
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后渊抽,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體懒闷,經(jīng)...
    沈念sama閱讀 44,194評論 1 303
  • 正文 獨居荒郊野嶺守林人離奇死亡栈幸,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 36,525評論 2 327
  • 正文 我和宋清朗相戀三年愤估,在試婚紗的時候發(fā)現(xiàn)自己被綠了速址。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片玩焰。...
    茶點故事閱讀 38,664評論 1 340
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖芍锚,靈堂內(nèi)的尸體忽然破棺而出昔园,到底是詐尸還是另有隱情,我是刑警寧澤并炮,帶...
    沈念sama閱讀 34,334評論 4 330
  • 正文 年R本政府宣布蒿赢,位于F島的核電站,受9級特大地震影響渣触,放射性物質(zhì)發(fā)生泄漏羡棵。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 39,944評論 3 313
  • 文/蒙蒙 一嗅钻、第九天 我趴在偏房一處隱蔽的房頂上張望皂冰。 院中可真熱鬧,春花似錦养篓、人聲如沸秃流。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,764評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽舶胀。三九已至概说,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間嚣伐,已是汗流浹背糖赔。 一陣腳步聲響...
    開封第一講書人閱讀 31,997評論 1 266
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留轩端,地道東北人放典。 一個月前我還...
    沈念sama閱讀 46,389評論 2 360
  • 正文 我出身青樓,卻偏偏與公主長得像基茵,于是被迫代替她去往敵國和親奋构。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 43,554評論 2 349

推薦閱讀更多精彩內(nèi)容

  • AI人工智能時代拱层,機器學習弥臼,深度學習作為其核心,本文主要介紹機器學習的基礎(chǔ)算法根灯,以詳細線介紹 線性回歸算法 及其 ...
    erixhao閱讀 13,834評論 0 36
  • 注:題中所指的『機器學習』不包括『深度學習』醋火。本篇文章以理論推導為主,不涉及代碼實現(xiàn)箱吕。 前些日子定下了未來三年左右...
    我偏笑_NSNirvana閱讀 39,933評論 12 145
  • 機器學習是做NLP和計算機視覺這類應用算法的基礎(chǔ)芥驳,雖然現(xiàn)在深度學習模型大行其道,但是懂一些傳統(tǒng)算法的原理和它們之間...
    在河之簡閱讀 20,488評論 4 65
  • 引言 機器學習欄目記錄我在學習Machine Learning過程的一些心得筆記茬高,涵蓋線性回歸兆旬、邏輯回歸、Soft...
    hfk閱讀 4,353評論 4 18
  • 這一章講到的是一致性原則怎栽。這個原則可以用在教育孩子上丽猬,讓他許下承諾,寫下來熏瞄,然后這樣就可以變成對他的約束脚祟。我要加強...
    小金魚藏在水草后閱讀 298評論 0 0