Task4模型調(diào)參


學(xué)習(xí)目標(biāo)

  • 了解常用的機(jī)器學(xué)習(xí)模型霞怀,并掌握機(jī)器學(xué)習(xí)模型的建模與調(diào)參流程

內(nèi)容介紹

  1. 線性回歸模型:
    • 線性回歸對于特征的要求吉殃;
    • 處理長尾分布酱鸭;
    • 理解線性回歸模型劫樟;
  2. 模型性能驗證:
    • 評價函數(shù)與目標(biāo)函數(shù)痪枫;
    • 交叉驗證方法;
    • 留一驗證方法叠艳;
    • 針對時間序列問題的驗證奶陈;
    • 繪制學(xué)習(xí)率曲線;
    • 繪制驗證曲線附较;
  3. 嵌入式特征選擇:
    • Lasso回歸吃粒;
    • Ridge回歸;
    • 決策樹翅睛;
  4. 模型對比:
    • 常用線性模型声搁;
    • 常用非線性模型黑竞;
  5. 模型調(diào)參:
    • 貪心調(diào)參方法捕发;
    • 網(wǎng)格調(diào)參方法;
    • 貝葉斯調(diào)參方法很魂;

本文推薦了一些博客與教材供初學(xué)者們進(jìn)行學(xué)習(xí)扎酷。

線性回歸模型

https://zhuanlan.zhihu.com/p/49480391

決策樹模型

https://zhuanlan.zhihu.com/p/65304798

GBDT模型

https://zhuanlan.zhihu.com/p/45145899

XGBoost模型

https://zhuanlan.zhihu.com/p/86816771

LightGBM模型

https://zhuanlan.zhihu.com/p/89360721

推薦教材:

代碼示例

讀取數(shù)據(jù)

import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')

reduce_mem_usage 函數(shù)通過調(diào)整數(shù)據(jù)類型,幫助我們減少數(shù)據(jù)在內(nèi)存中占用的空間

def reduce_mem_usage(df):
    """ iterate through all the columns of a dataframe and modify the data type
        to reduce memory usage.        
    """
    start_mem = df.memory_usage().sum() 
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    
    for col in df.columns:
        col_type = df[col].dtype
        
        if col_type != object:
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)  
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        else:
            df[col] = df[col].astype('category')

    end_mem = df.memory_usage().sum() 
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    return df
sample_feature = reduce_mem_usage(pd.read_csv('data_for_tree.csv'))
Memory usage of dataframe is 60507328.00 MB
Memory usage after optimization is: 15724107.00 MB
Decreased by 74.0%
continuous_feature_names = [x for x in sample_feature.columns if x not in ['price','brand','model','brand']]

線性回歸 & 五折交叉驗證 & 模擬真實業(yè)務(wù)情況

sample_feature = sample_feature.dropna().replace('-', 0).reset_index(drop=True)
sample_feature['notRepairedDamage'] = sample_feature['notRepairedDamage'].astype(np.float32)
train = sample_feature[continuous_feature_names + ['price']]

train_X = train[continuous_feature_names]
train_y = train['price']
建模
from sklearn.linear_model import LinearRegression
model = LinearRegression(normalize=True)
model = model.fit(train_X, train_y)

查看訓(xùn)練的線性回歸模型的截距(intercept)與權(quán)重(coef)

'intercept:'+ str(model.intercept_)

sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
[('v_6', 3342612.384537345),
 ('v_8', 684205.534533214),
 ('v_9', 178967.94192530424),
 ('v_7', 35223.07319016895),
 ('v_5', 21917.550249749802),
 ('v_3', 12782.03250792227),
 ('v_12', 11654.925634146672),
 ('v_13', 9884.194615297649),
 ('v_11', 5519.182176035517),
 ('v_10', 3765.6101415594258),
 ('gearbox', 900.3205339198406),
 ('fuelType', 353.5206495542567),
 ('bodyType', 186.51797317460046),
 ('city', 45.17354204168846),
 ('power', 31.163045441455335),
 ('brand_price_median', 0.535967111869784),
 ('brand_price_std', 0.4346788365040235),
 ('brand_amount', 0.15308295553300566),
 ('brand_price_max', 0.003891831020467389),
 ('seller', -1.2684613466262817e-06),
 ('offerType', -4.759058356285095e-06),
 ('brand_price_sum', -2.2430642281682917e-05),
 ('name', -0.00042591632723759166),
 ('used_time', -0.012574429533889028),
 ('brand_price_average', -0.414105722833381),
 ('brand_price_min', -2.3163823428971835),
 ('train', -5.392535065078232),
 ('power_bin', -59.24591853031839),
 ('v_14', -233.1604256172217),
 ('kilometer', -372.96600915402496),
 ('notRepairedDamage', -449.29703564695365),
 ('v_0', -1490.6790578168238),
 ('v_4', -14219.648899108111),
 ('v_2', -16528.55239086934),
 ('v_1', -42869.43976200439)]
from matplotlib import pyplot as plt
subsample_index = np.random.randint(low=0, high=len(train_y), size=50)

繪制特征v_9的值與標(biāo)簽的散點圖遏匆,圖片發(fā)現(xiàn)模型的預(yù)測結(jié)果(藍(lán)色點)與真實標(biāo)簽(黑色點)的分布差異較大法挨,且部分預(yù)測值出現(xiàn)了小于0的情況,說明我們的模型存在一些問題

plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], model.predict(train_X.loc[subsample_index]), color='blue')
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price is obvious different from true price')
plt.show()
The predicted price is obvious different from true price

通過作圖我們發(fā)現(xiàn)數(shù)據(jù)的標(biāo)簽(price)呈現(xiàn)長尾分布幅聘,不利于我們的建模預(yù)測凡纳。原因是很多模型都假設(shè)數(shù)據(jù)誤差項符合正態(tài)分布,而長尾分布的數(shù)據(jù)違背了這一假設(shè)帝蒿。參考博客:https://blog.csdn.net/Noob_daniel/article/details/76087829

import seaborn as sns
print('It is clear to see the price shows a typical exponential distribution')
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.distplot(train_y)
plt.subplot(1,2,2)
sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)])
It is clear to see the price shows a typical exponential distribution





<matplotlib.axes._subplots.AxesSubplot at 0x1b33efb2f98>

在這里我們對標(biāo)簽進(jìn)行了 log(x+1) 變換荐糜,使標(biāo)簽貼近于正態(tài)分布

train_y_ln = np.log(train_y + 1)
import seaborn as sns
print('The transformed price seems like normal distribution')
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.distplot(train_y_ln)
plt.subplot(1,2,2)
sns.distplot(train_y_ln[train_y_ln < np.quantile(train_y_ln, 0.9)])
The transformed price seems like normal distribution





<matplotlib.axes._subplots.AxesSubplot at 0x1b33f077160>
model = model.fit(train_X, train_y_ln)

print('intercept:'+ str(model.intercept_))
sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
intercept:23.515920686637713





[('v_9', 6.043993029165403),
 ('v_12', 2.0357439855551394),
 ('v_11', 1.3607608712255672),
 ('v_1', 1.3079816298861897),
 ('v_13', 1.0788833838535354),
 ('v_3', 0.9895814429387444),
 ('gearbox', 0.009170812023421397),
 ('fuelType', 0.006447089787635784),
 ('bodyType', 0.004815242907679581),
 ('power_bin', 0.003151801949447194),
 ('power', 0.0012550361843629999),
 ('train', 0.0001429273782925814),
 ('brand_price_min', 2.0721302299502698e-05),
 ('brand_price_average', 5.308179717783439e-06),
 ('brand_amount', 2.8308531339942507e-06),
 ('brand_price_max', 6.764442596115763e-07),
 ('offerType', 1.6765966392995324e-10),
 ('seller', 9.308109838457312e-12),
 ('brand_price_sum', -1.3473184925468486e-10),
 ('name', -7.11403461065247e-08),
 ('brand_price_median', -1.7608143661053008e-06),
 ('brand_price_std', -2.7899058266986454e-06),
 ('used_time', -5.6142735899344175e-06),
 ('city', -0.0024992974087053223),
 ('v_14', -0.012754139659375262),
 ('kilometer', -0.013999175312751872),
 ('v_0', -0.04553774829634237),
 ('notRepairedDamage', -0.273686961116076),
 ('v_7', -0.7455902679730504),
 ('v_4', -0.9281349233755761),
 ('v_2', -1.2781892166433606),
 ('v_5', -1.5458846136756323),
 ('v_10', -1.8059217242413748),
 ('v_8', -42.611729973490604),
 ('v_6', -241.30992120503035)]

再次進(jìn)行可視化,發(fā)現(xiàn)預(yù)測結(jié)果與真實值較為接近葛超,且未出現(xiàn)異常狀況

plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], np.exp(model.predict(train_X.loc[subsample_index])), color='blue')
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price seems normal after np.log transforming')
plt.show()
The predicted price seems normal after np.log transforming

模擬真實業(yè)務(wù)情況

但在事實上暴氏,由于我們并不具有預(yù)知未來的能力,五折交叉驗證在某些與時間相關(guān)的數(shù)據(jù)集上反而反映了不真實的情況绣张。通過2018年的二手車價格預(yù)測2017年的二手車價格答渔,這顯然是不合理的,因此我們還可以采用時間順序?qū)?shù)據(jù)集進(jìn)行分隔侥涵。在本例中沼撕,我們選用靠前時間的4/5樣本當(dāng)作訓(xùn)練集宋雏,靠后時間的1/5當(dāng)作驗證集,最終結(jié)果與五折交叉驗證差距不大

import datetime
sample_feature = sample_feature.reset_index(drop=True)
split_point = len(sample_feature) // 5 * 4
train = sample_feature.loc[:split_point].dropna()
val = sample_feature.loc[split_point:].dropna()

train_X = train[continuous_feature_names]
train_y_ln = np.log(train['price'] + 1)
val_X = val[continuous_feature_names]
val_y_ln = np.log(val['price'] + 1)
model = model.fit(train_X, train_y_ln)
mean_absolute_error(val_y_ln, model.predict(val_X))
0.19443858353490887

除此之外务豺,決策樹通過信息熵或GINI指數(shù)選擇分裂節(jié)點時好芭,優(yōu)先選擇的分裂特征也更加重要,這同樣是一種特征選擇的方法冲呢。XGBoost與LightGBM模型中的model_importance指標(biāo)正是基于此計算的

模型調(diào)參

在此我們介紹了三種常用的調(diào)參方法如下:

## LGB的參數(shù)集合:

objective = ['regression', 'regression_l1', 'mape', 'huber', 'fair']

num_leaves = [3,5,10,15,20,40, 55]
max_depth = [3,5,10,15,20,40, 55]
bagging_fraction = []
feature_fraction = []
drop_rate = []

貪心調(diào)參

best_obj = dict()
for obj in objective:
    model = LGBMRegressor(objective=obj)
    score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
    best_obj[obj] = score
    
best_leaves = dict()
for leaves in num_leaves:
    model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)
    score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
    best_leaves[leaves] = score
    
best_depth = dict()
for depth in max_depth:
    model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0],
                          num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0],
                          max_depth=depth)
    score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
    best_depth[depth] = score
sns.lineplot(x=['0_initial','1_turning_obj','2_turning_leaves','3_turning_depth'], y=[0.143 ,min(best_obj.values()), min(best_leaves.values()), min(best_depth.values())])
<matplotlib.axes._subplots.AxesSubplot at 0x1fea93f6080>

Grid Search 調(diào)參

from sklearn.model_selection import GridSearchCV
parameters = {'objective': objective , 'num_leaves': num_leaves, 'max_depth': max_depth}
model = LGBMRegressor()
clf = GridSearchCV(model, parameters, cv=5)
clf = clf.fit(train_X, train_y)
clf.best_params_
{'max_depth': 15, 'num_leaves': 55, 'objective': 'regression'}
model = LGBMRegressor(objective='regression',
                          num_leaves=55,
                          max_depth=15)
np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
0.13626164479243302

總結(jié)

在本章中舍败,我們完成了建模與調(diào)參的工作,并對我們的模型進(jìn)行了驗證敬拓。此外邻薯,我們還采用了一些基本方法來提高預(yù)測的精度,提升如下圖所示乘凸。

plt.figure(figsize=(13,5))
sns.lineplot(x=['0_origin','1_log_transfer','2_L1_&_L2','3_change_model','4_parameter_turning'], y=[1.36 ,0.19, 0.19, 0.14, 0.13])

Task5 建模調(diào)參 END.

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末厕诡,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子营勤,更是在濱河造成了極大的恐慌灵嫌,老刑警劉巖,帶你破解...
    沈念sama閱讀 206,311評論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件葛作,死亡現(xiàn)場離奇詭異寿羞,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)赂蠢,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,339評論 2 382
  • 文/潘曉璐 我一進(jìn)店門绪穆,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人虱岂,你說我怎么就攤上這事玖院。” “怎么了第岖?”我有些...
    開封第一講書人閱讀 152,671評論 0 342
  • 文/不壞的土叔 我叫張陵难菌,是天一觀的道長。 經(jīng)常有香客問我蔑滓,道長郊酒,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 55,252評論 1 279
  • 正文 為了忘掉前任烫饼,我火速辦了婚禮猎塞,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘杠纵。我一直安慰自己荠耽,他們只是感情好,可當(dāng)我...
    茶點故事閱讀 64,253評論 5 371
  • 文/花漫 我一把揭開白布比藻。 她就那樣靜靜地躺著铝量,像睡著了一般倘屹。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上慢叨,一...
    開封第一講書人閱讀 49,031評論 1 285
  • 那天纽匙,我揣著相機(jī)與錄音,去河邊找鬼拍谐。 笑死烛缔,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的轩拨。 我是一名探鬼主播践瓷,決...
    沈念sama閱讀 38,340評論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼亡蓉!你這毒婦竟也來了晕翠?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 36,973評論 0 259
  • 序言:老撾萬榮一對情侶失蹤砍濒,失蹤者是張志新(化名)和其女友劉穎淋肾,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體爸邢,經(jīng)...
    沈念sama閱讀 43,466評論 1 300
  • 正文 獨居荒郊野嶺守林人離奇死亡樊卓,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 35,937評論 2 323
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了甲棍。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片简识。...
    茶點故事閱讀 38,039評論 1 333
  • 序言:一個原本活蹦亂跳的男人離奇死亡赶掖,死狀恐怖感猛,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情奢赂,我是刑警寧澤陪白,帶...
    沈念sama閱讀 33,701評論 4 323
  • 正文 年R本政府宣布,位于F島的核電站膳灶,受9級特大地震影響咱士,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜轧钓,卻給世界環(huán)境...
    茶點故事閱讀 39,254評論 3 307
  • 文/蒙蒙 一序厉、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧毕箍,春花似錦弛房、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,259評論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽荷逞。三九已至,卻和暖如春粹排,著一層夾襖步出監(jiān)牢的瞬間种远,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 31,485評論 1 262
  • 我被黑心中介騙來泰國打工顽耳, 沒想到剛下飛機(jī)就差點兒被人妖公主榨干…… 1. 我叫王不留坠敷,地道東北人。 一個月前我還...
    沈念sama閱讀 45,497評論 2 354
  • 正文 我出身青樓射富,卻偏偏與公主長得像常拓,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子辉浦,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 42,786評論 2 345

推薦閱讀更多精彩內(nèi)容