20170720_DE

<h1 align = "center">Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces</h1>

by Rainer Storn and Kenneth Price TR-95-012
March 1995

abstract

A new heuristic approach for minimizing possibly nonlinear and non differentiable continuous space functions is presented. By means of an extensive testbed, which includes the De Jong functions, it will be demonstrated that the new method converges faster and with more certainty than Adaptive Simulated Annealing as well as the Annealed Nelder&Mead approach, both of which have a reputation for being very powerful. The new method requires few control variables, is robust, easy to use and lends itself very well to parallel computation.


這是一個(gè)求解連續(xù)空間非線性不可導(dǎo)函數(shù)最小值的新的啟發(fā)式解法非凌。通過廣泛的實(shí)驗(yàn)荆针,包括使用De Jong 函數(shù)測試并蝗,可以證實(shí)新的方法比起被廣泛認(rèn)為很有效的自適應(yīng)模擬退火和Nelder&Mead退火方法 ,收斂更快并且更準(zhǔn)確滚停。新的方法幾乎不需要控制變量粥惧,適應(yīng)性強(qiáng)键畴,使用簡便并且適于并行計(jì)算突雪。


De Jong函數(shù)見http://www.geatbx.com/docu/fcnindex-01.html
The simplest test function is De Jong's function 1. It is also known as sphere model. It is continuos, convex and unimodal.
function definition:


f1(x)=sum(x(i)^2), i=1:n, -5.12<=x(i)<=5.12.
global minimum:
f(x)=0, x(i)=0, i=1:n.


introduction

Problems which involve global optimization over continuous spaces are ubiquitous throughout the scientific community. In general, the task is to optimize certain properties of a system by pertinently choosing the system parameters. For convenience, a system's parameters are usually represented as a vector. The standard approach to an optimization problem begins by designing an objective function that can model the problem's objectives while incorporating any constraints. Especially in the circuit design community, methods are in use which do not need an objective function [1], [2], [3]. Although these methods can make formulating a problem simpler, they are usually inferior to techniques which make full use of an objective function. Consequently, we restrict ourselves to optimization methods which fully use the objective function. In most cases, the objective function is designed to transform the optimization problem into a minimization task. To this end, we will limit our investigation in the following to minimization problems.


連續(xù)空間全局優(yōu)化的問題在整個(gè)學(xué)術(shù)界無所不在咏删。任務(wù)通常是通過選擇恰當(dāng)參數(shù)優(yōu)化系統(tǒng)特定的特征。為了方便督函,系統(tǒng)的參數(shù)通常被表示為一個(gè)向量。解決優(yōu)化問題的標(biāo)準(zhǔn)方法往往是在問題約束內(nèi)對目標(biāo)問題建模設(shè)計(jì)目標(biāo)函數(shù)锋叨。尤其是在環(huán)形群體宛篇?娃磺,解決問題不需要目標(biāo)函數(shù)叫倍。即使這些方法可以使得建模一個(gè)問題簡單,他們比起充分利用目標(biāo)函數(shù)的方法要低劣吆倦。因此,我們采用充分利用目標(biāo)函數(shù)的優(yōu)化方法逼庞。在大多數(shù)情況下瞻赶,優(yōu)化函數(shù)能把優(yōu)化問題轉(zhuǎn)化為最小化問題。因此砸逊,我們會(huì)把我們的探究轉(zhuǎn)為最小化問題。


When the objective function is nonlinear and non differentiable, direct search approaches are the methods of choice. The best known of these are the algorithms by Nelder&Mead [4], by Hooke&Jeeves [4], genetic algorithms [5], and evolutionary algorithms [6], [7] with the latter being truly continuous counterparts of genetic algorithms. At the heart of every direct search method is a strategy that generates variations of the parameter vectors. Once a variation is generated, a decision must be made whether or not to accept the newly derived parameters. All basic direct search methods use the greedy criterion to make this decision. Under the greedy criterion, a new parameter vector is accepted if and only if it reduces the value of the objective function. Although the greedy decision process converges fairly fast, it runs the risk of becoming trapped by local minimum. Inherently parallel search techniques like genetic and evolutionary algorithms have some built-in safeguards to forestall misconvergence.


當(dāng)目標(biāo)函數(shù)是非線性并且不可導(dǎo)司倚,直接搜索法是最好的方法。這其中最讓我們熟知的是Nelder&Mead的算法动知,Hooke&Jeeves的算法,遺傳算法和演化算法盒粮,演化算法是遺傳算法的后來發(fā)展的對應(yīng)物。所有直接搜索法的核心都是從參數(shù)向量中產(chǎn)生變異妒穴。一旦變異產(chǎn)生,必須要決定是否接受這個(gè)新的產(chǎn)生的參數(shù)讼油。所有的基礎(chǔ)的直接搜索法都采用貪心算法做這個(gè)決定呢簸。在貪心算法下矮台,新的參數(shù)向量只有在減少目標(biāo)函數(shù)值時(shí)才會(huì)被采納阔墩。即使貪心決策過程收斂迅速,它存在被存在局部最小的風(fēng)險(xiǎn)啸箫。實(shí)際上相似的搜索策略如遺傳算法和演化算法有很多內(nèi)建機(jī)制預(yù)防錯(cuò)誤收斂。


By running several vectors simultaneously, superior parameter configurations can help other vectors escape local minima. Another method which can extricate a parameter vector from a local minimum is Simulated Annealing [8], [9], [10]. Annealing relaxes the greedy criterion by occasionally permitting an uphill move. Such moves potentially allow a parameter vector to climb out of a local minimum. As the number of iterations increases, the probability of accepting an uphill move decreases. In the long run, this leads to the greedy criterion. While all direct search methods lend themselves to annealing, it has mostly been used just for the Random Walk, which itself is the simplest case of an evolutionary algorithm [6]. Nevertheless, attempts have been made to anneal other direct searches like the method of Nelder&Mead [10] and genetic algorithms [8], [11].


通過同時(shí)處理多組向量蝉娜,好的參數(shù)配置可以更好的幫助其他向量逃離局部最小扎唾。其他可以幫助參數(shù)向量逃離局部最小的模擬退火。退火通過偶然允許目標(biāo)函數(shù)值擴(kuò)大的移動(dòng)放松了貪心策略胸遇。這樣的移動(dòng)潛在的允許參數(shù)向量離開局部最小。隨著迭代次數(shù)增加纸镊,接受上行移動(dòng)的概率下降。長期來看逗威,這趨近于貪心策略。當(dāng)所有直接搜索都參與模擬退火凯旭,他們幾乎可以看做隨機(jī)游走使套,這是最簡單的進(jìn)化算法鞠柄。然而,也有對其他直接搜索模擬退火的嘗試春锋,如Nelder&Mead和遺傳算法符匾。


最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末好唯,一起剝皮案震驚了整個(gè)濱河市拣播,隨后出現(xiàn)的幾起案子嚷硫,更是在濱河造成了極大的恐慌肺孤,老刑警劉巖罗晕,帶你破解...
    沈念sama閱讀 221,695評論 6 515
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件小渊,死亡現(xiàn)場離奇詭異,居然都是意外死亡酬屉,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,569評論 3 399
  • 文/潘曉璐 我一進(jìn)店門呐萨,熙熙樓的掌柜王于貴愁眉苦臉地迎上來莽囤,“玉大人,你說我怎么就攤上這事朽缎。” “怎么了话肖?”我有些...
    開封第一講書人閱讀 168,130評論 0 360
  • 文/不壞的土叔 我叫張陵,是天一觀的道長羡儿。 經(jīng)常有香客問我礼患,道長掠归,這世上最難降的妖魔是什么悄泥? 我笑而不...
    開封第一講書人閱讀 59,648評論 1 297
  • 正文 為了忘掉前任,我火速辦了婚禮弹囚,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘鸥鹉。我一直安慰自己,他們只是感情好毁渗,可當(dāng)我...
    茶點(diǎn)故事閱讀 68,655評論 6 397
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著灸异,像睡著了一般。 火紅的嫁衣襯著肌膚如雪肺樟。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 52,268評論 1 309
  • 那天么伯,我揣著相機(jī)與錄音,去河邊找鬼誓篱。 笑死,一個(gè)胖子當(dāng)著我的面吹牛窜骄,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播邻遏,決...
    沈念sama閱讀 40,835評論 3 421
  • 文/蒼蘭香墨 我猛地睜開眼虐骑,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了廷没?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 39,740評論 0 276
  • 序言:老撾萬榮一對情侶失蹤颠黎,失蹤者是張志新(化名)和其女友劉穎滞项,沒想到半個(gè)月后夭坪,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體文判,經(jīng)...
    沈念sama閱讀 46,286評論 1 318
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡室梅,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,375評論 3 340
  • 正文 我和宋清朗相戀三年亡鼠,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了赏殃。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片间涵。...
    茶點(diǎn)故事閱讀 40,505評論 1 352
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖浑厚,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情钳幅,我是刑警寧澤,帶...
    沈念sama閱讀 36,185評論 5 350
  • 正文 年R本政府宣布诬乞,位于F島的核電站,受9級特大地震影響震嫉,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜票堵,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,873評論 3 333
  • 文/蒙蒙 一逮栅、第九天 我趴在偏房一處隱蔽的房頂上張望悴势。 院中可真熱鬧措伐,春花似錦、人聲如沸侥加。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,357評論 0 24
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽短蜕。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間岖研,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 33,466評論 1 272
  • 我被黑心中介騙來泰國打工孙援, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人拓售。 一個(gè)月前我還...
    沈念sama閱讀 48,921評論 3 376
  • 正文 我出身青樓,卻偏偏與公主長得像崭放,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個(gè)殘疾皇子币砂,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,515評論 2 359

推薦閱讀更多精彩內(nèi)容

  • 晨讀書目:《買買買時(shí)代的行為經(jīng)濟(jì)學(xué)》 ?關(guān)鍵詞:『損失厭惡心理』 『聚光燈效應(yīng)』 ...
    萬菠蘿閱讀 188評論 22 17
  • 湖畔松間道玻侥,微風(fēng)拂六出。 寒夜未央急展俏凑兰,一點(diǎn)北國素。 也擬爭芳意姑食,卻壓墻角竹。 閨樓佳人朝梳頭音半,消失...
    茶詩閱讀 186評論 0 0
  • 做營銷策劃的小編居住在一個(gè)大型社區(qū),社區(qū)內(nèi)有一個(gè)針對幼兒和低年級學(xué)生招生的美術(shù)班祟剔,因?yàn)榉奖悖【幍暮⒆訌挠變簣@起就...
    沙里淘金閱讀 12,604評論 1 12
  • 此刻的我在婚禮前一天上午繼續(xù)在診所輸液昨晚睡前靜靜想在在出嫁離開以生活了近30年的家 要寫些什么 來自外界的各種...
    daee3df6c4e8閱讀 158評論 0 0
  • 當(dāng)風(fēng)箏脫了線宣旱, 當(dāng)鉆石再也不會(huì)耀眼叛薯, 當(dāng)魚離開了大海浑吟, 當(dāng)最后一片花瓣凋零, 當(dāng)你已經(jīng)離去组力。 我還會(huì)天真的以為, ...
    Angely_Sufi閱讀 450評論 0 1