分別用遞歸和迭代的方式實現(xiàn)下述的公式:
分子部分的規(guī)律為:從第二個開始腹鹉,每兩個數(shù)遞增一次枷畏。因此瓮增,可以用如下公式表示:
用程序計算分子中第n個數(shù)的值,如下所示:
(define (numerator-num n)
(* (+ (quotient n 2)
1)
2))
分母部分的規(guī)律為:從第一個開始绷跑,每兩個數(shù)遞增一次拳恋。因此,可以用如下公式表示:
用程序計算分母中第n個值砸捏,如下所示:
(define (denominator-num n)
(+ (* (quotient (+ n 1) 2)
2)
1))
對于類似既可以用遞歸谬运,也可以用迭代的形式得到。
(1)遞歸表示
(define (product term a next b)
(if (> a b)
1
(* (term a)
(product term (next a) next b))))
代碼中product是過程名垦藏,term是公式中的函數(shù)f梆暖,a是起始計算值(也就是公式中的a1),b的終止運算值(也就是公式中的an)掂骏。next指的是a(k)變化到a(k+1)的規(guī)律轰驳,比如對于公式中的分子分母而言,a(k)=k弟灼,a(k+1)=k+1级解,因此這里的next就是進行加一操作。遞歸的思想是通過反復(fù)調(diào)用過程product田绑,得到最終的結(jié)果:
用程序表示過程勤哗,可以表示為:
(2)迭代表示
(define (product term a next b)
(define (iter a result)
(if (> a b)
result
(iter (next a) (* (term a) result))))
(iter a 1))
迭代與遞歸最根本的區(qū)別在于:遞歸會不停地展開,直到完全展開辛馆,然后開始代入計算俺陋;迭代會不停的對數(shù)據(jù)進行替代,而不會展開數(shù)據(jù)昙篙。比如該段代碼的公式表示為:![][7]
result值會在迭代過程中不斷更新腊状,直到最后將result輸出。
因此,可以得到2中不同的遞歸和迭代方式同蜻。
(1)遞歸方式1:分子分母分別遞歸棚点,最后再相除。
#lang planet neil/sicp
(#%require (only racket/base current-inexact-milliseconds))
(define (fraction n)
(define start-time (current-inexact-milliseconds))
(/ (numerator n)
(denominator n))
(newline)
(define end-time (current-inexact-milliseconds))
(display (- end-time start-time)))
(define (numerator n)
(define (fractions-next x) (+ x 1))
(product numerator-num 1 fractions-next n))
(define (denominator n)
(define (fractions-next x) (+ x 1))
(product denominator-num 1 fractions-next n))
(define (numerator-num n)
(* (+ (quotient n 2)
1)
2))
(define (denominator-num n)
(+ (* (quotient (+ n 1) 2)
2)
1))
(define (product term a next b)
(if (> a b)
1
(* (term a)
(product term (next a) next b))))
(2)遞歸方式2:分子分母看作一個整體湾蔓,再進行遞歸瘫析。
#lang planet neil/sicp
(#%require (only racket/math pi))
(#%require (only racket/base current-inexact-milliseconds))
(define (fraction n)
(define start-time (current-inexact-milliseconds))
(define (fractions-next x) (+ x 1))
(product fraction-num 1 fractions-next n)
(define end-time (current-inexact-milliseconds))
(display (- end-time start-time)))
(define (fraction-num n)
(/ (numerator_num n)
(denominator_num n)))
(define (numerator_num n)
(* (+ (quotient n 2)
1)
2))
(define (denominator_num n)
(+ (* (quotient (+ n 1) 2)
2)
1))
(define (product term a next b)
(if (> a b)
1
(* (term a)
(product term (next a) next b))))
(3)迭代方式1:分子分母分別迭代,最后再相除。
#lang planet neil/sicp
(#%require (only racket/base current-inexact-milliseconds))
(define (fraction n)
(define start-time (current-inexact-milliseconds))
(/ (numerator n) (denominator n))
(newline)
(define end-time (current-inexact-milliseconds))
(display (- end-time start-time)))
(define (numerator n)
(define start-time (current-inexact-milliseconds))
(define (fractions-next x) (+ x 1))
(product numerator_num 1 fractions-next n))
(define (denominator n)
(define (fractions-next x) (+ x 1))
(product denominator_num 1 fractions-next n))
(define (numerator_num n)
(* (+ (quotient n 2)
1)
2))
(define (denominator_num n)
(+ (* (quotient (+ n 1) 2)
2)
1))
(define (product term a next b)
(define (iter a result)
(if (> a b)
result
(iter (next a) (* (term a) result))))
(iter a 1))
(4)迭代方式2:分子分母看作一個整體贬循,再進行迭代咸包。
#lang planet neil/sicp
(#%require (only racket/base current-inexact-milliseconds))
(define (fraction n)
(define start-time (current-inexact-milliseconds))
(define (fractions-next x) (+ x 1))
(product fraction-1num 1 fractions-next n)
(newline)
(define end-time (current-inexact-milliseconds))
(display (- end-time start-time)))
(define (fraction-1num n)
(/ (numerator_num n)
(denominator_num n)))
(define (numerator_num n)
(* (+ (quotient n 2)
1)
2))
(define (denominator_num n)
(+ (* (quotient (+ n 1) 2)
2)
1))
(define (product term a next b)
(define (iter a result)
(if (> a b)
result
(iter (next a) (* (term a) result))))
(iter a 1))
分別使用上述迭代和遞歸方法,計算n=1000杖虾,重復(fù)計算50次烂瘫,記錄下每次運算時間,如下圖所示奇适。
[7]: http://latex.codecogs.com/svg.latex?(itera_{1}result)=(itera_{2}(f(a_{1}){\times}result))=(itera_{3}(f(a_{2}){\times}result))