1.需求:
SparkStreaming處理來自flume push方式發(fā)來的數(shù)據(jù),即flume將數(shù)據(jù)推給spark Streaming
2.代碼:
(1)pom.xml
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming-flume -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_2.11</artifactId>
<version>2.1.0</version>
</dependency>
</dependencies>
(2)flume文件option
option
#bin/flume-ng agent -n a1 -f myconf/option -c conf -Dflume.root.logger=INFO,console
#定義agent名,source寄悯,channel,sink的名稱
a1.sources=r1
a1.channels =c1
a1.sinks=k1
#具體定義source
a1.sources.r1.type= spooldir
a1.sources.r1.spoolDir= /opt/TestFolder/logs
#具體定義channel1
a1.channels.c1.type = memory
a1.channels.c1.capacity=10000
a1.channels.c1.transactionCapacity = 100
#具體定義sink
a1.sinks = k1
a1.sinks.k1.type = avro
a1.sinks.k1.channels =c1
a1.sinks.k1.hostname=192.168.31.211
a1.sinks.k1.port=1236
#組裝source, channel,sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel =c1
(3)
package day1211
import org.apache.log4j.Logger
import org.apache.log4j.Level
import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.flume.FlumeUtils
object MyFlumeStream {
def main(args: Array[String]): Unit = {
System.setProperty("hadoop.home.dir", "/Users/macbook/Documents/hadoop/hadoop-2.8.4")
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
val conf = new SparkConf().setAppName("MyFlumeStream").setMaster("local[2]")
val ssc = new StreamingContext(conf,Seconds(3))
//創(chuàng)建 flume event 從 flume中接收push來的數(shù)據(jù) ---> 也是DStream
//flume將數(shù)據(jù)push到了 ip 和 端口中
val flumeEventDstream = FlumeUtils.createStream(ssc, "192.168.1.121", 1236)
val lineDStream = flumeEventDstream.map( e => {
new String(e.event.getBody.array)
})
lineDStream.print()
ssc.start()
ssc.awaitTermination()
}
}
3.運行:
(1)運行SparkStreaming程序:
(2)開啟flume
bin/flume-ng agent -n a1 -c conf -f jobconf/option -Dflume.root.logger=INFO,console
4.向/opt/TestFolder/logs中添加數(shù)據(jù),查看結(jié)果:
cp a.txt /opt/TestFolder/logs
添加數(shù)據(jù)
5.結(jié)果
結(jié)果