2020-11-23

1min 36s

declare

start_time varchar:= time_extend->'start_time';

end_time varchar:= time_extend->'end_time';

max_zero_row integer;

max_zero_col integer;

begin

--構(gòu)建完整的行\(zhòng)列序列

max_zero_row := (select max(d.row_zero) from crimestat.datacluster(time_extend,space_extend,layerth) as d);

max_zero_col := (select max(d.col_zero) from crimestat.datacluster(time_extend,space_extend,layerth) as d);

create temp table row_series on commit drop as (select generate_series as row_series from generate_series(0,max_zero_row,1));

create temp table col_series on commit drop as (select generate_series as col_series from generate_series(0,max_zero_col,1));

--構(gòu)建完整的時(shí)間序列

create temp table time_series on commit drop as (

select to_char(generate_series,'YYYYMMDDHH24')::varchar as time_series from generate_series(to_timestamp(start_time,'YYYYMMDDHH24'), to_timestamp(end_time,'YYYYMMDDHH24'),'1 hour'));

create temp table full_series on commit drop as (

select time_series,row_series,col_series from row_series cross join col_series cross join time_series order by time_series,row_series,col_series);

return query select? time_series,row_series,col_series, COALESCE(d.counts, 0) from full_series f left outer join? crimestat.datacluster(time_extend,space_extend,layerth) d on f.time_series = d.p_time and f.row_series = d.row_zero and f.col_series = d.col_zero;

end;


1min47s

declare

start_time varchar:= time_extend->'start_time';

end_time varchar:= time_extend->'end_time';

max_zero_row integer;

max_zero_col integer;

begin

--構(gòu)建完整的行\(zhòng)列序列

max_zero_row := (select max(d.row_zero) from crimestat.datacluster(time_extend,space_extend,layerth) as d);

max_zero_col := (select max(d.col_zero) from crimestat.datacluster(time_extend,space_extend,layerth) as d);

--create temp table row_series on commit drop as (select generate_series as row_series from generate_series(0,max_zero_row,1));

--create temp table col_series on commit drop as (select generate_series as col_series from generate_series(0,max_zero_col,1));

--構(gòu)建完整的時(shí)間序列

--create temp table time_series on commit drop as

--(select to_char(generate_series,'YYYYMMDDHH24')::varchar as time_series from generate_series(to_timestamp(start_time,'YYYYMMDDHH24'), to_timestamp(end_time,'YYYYMMDDHH24'),'1 hour'));

create temp table full_series on commit drop as (

select time_series,row_series,col_series from (select generate_series as row_series from generate_series(0,max_zero_row,1)) row_series cross join? (select generate_series as col_series from generate_series(0,max_zero_col,1)) col_series cross join? (select to_char(generate_series,'YYYYMMDDHH24')::varchar as time_series from generate_series(to_timestamp(start_time,'YYYYMMDDHH24'), to_timestamp(end_time,'YYYYMMDDHH24'),'1 hour')) time_series order by time_series,row_series,col_series);

return query select? time_series,row_series,col_series, COALESCE(d.counts, 0) from full_series f left outer join? crimestat.datacluster(time_extend,space_extend,layerth) d on f.time_series = d.p_time and f.row_series = d.row_zero and f.col_series = d.col_zero;

end;



?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末告希,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌账嚎,老刑警劉巖,帶你破解...
    沈念sama閱讀 221,820評(píng)論 6 515
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件柑爸,死亡現(xiàn)場(chǎng)離奇詭異端圈,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)挖诸,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,648評(píng)論 3 399
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來法精,“玉大人多律,你說我怎么就攤上這事÷眩” “怎么了狼荞?”我有些...
    開封第一講書人閱讀 168,324評(píng)論 0 360
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)帮碰。 經(jīng)常有香客問我相味,道長(zhǎng),這世上最難降的妖魔是什么殉挽? 我笑而不...
    開封第一講書人閱讀 59,714評(píng)論 1 297
  • 正文 為了忘掉前任丰涉,我火速辦了婚禮,結(jié)果婚禮上斯碌,老公的妹妹穿的比我還像新娘一死。我一直安慰自己,他們只是感情好傻唾,可當(dāng)我...
    茶點(diǎn)故事閱讀 68,724評(píng)論 6 397
  • 文/花漫 我一把揭開白布投慈。 她就那樣靜靜地躺著承耿,像睡著了一般。 火紅的嫁衣襯著肌膚如雪伪煤。 梳的紋絲不亂的頭發(fā)上加袋,一...
    開封第一講書人閱讀 52,328評(píng)論 1 310
  • 那天,我揣著相機(jī)與錄音抱既,去河邊找鬼职烧。 笑死,一個(gè)胖子當(dāng)著我的面吹牛防泵,可吹牛的內(nèi)容都是我干的阳堕。 我是一名探鬼主播,決...
    沈念sama閱讀 40,897評(píng)論 3 421
  • 文/蒼蘭香墨 我猛地睜開眼择克,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼恬总!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起肚邢,我...
    開封第一講書人閱讀 39,804評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤壹堰,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后骡湖,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體贱纠,經(jīng)...
    沈念sama閱讀 46,345評(píng)論 1 318
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,431評(píng)論 3 340
  • 正文 我和宋清朗相戀三年响蕴,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了谆焊。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 40,561評(píng)論 1 352
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡浦夷,死狀恐怖辖试,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情劈狐,我是刑警寧澤罐孝,帶...
    沈念sama閱讀 36,238評(píng)論 5 350
  • 正文 年R本政府宣布,位于F島的核電站肥缔,受9級(jí)特大地震影響莲兢,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜续膳,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,928評(píng)論 3 334
  • 文/蒙蒙 一改艇、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧坟岔,春花似錦谒兄、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,417評(píng)論 0 24
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)酣溃。三九已至瘦穆,卻和暖如春纪隙,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背扛或。 一陣腳步聲響...
    開封第一講書人閱讀 33,528評(píng)論 1 272
  • 我被黑心中介騙來泰國(guó)打工绵咱, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人熙兔。 一個(gè)月前我還...
    沈念sama閱讀 48,983評(píng)論 3 376
  • 正文 我出身青樓悲伶,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親住涉。 傳聞我的和親對(duì)象是個(gè)殘疾皇子麸锉,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,573評(píng)論 2 359

推薦閱讀更多精彩內(nèi)容