Spark Streaming源碼解讀之RDD生成全生命周期徹底研究和思考

RDD的三個(gè)問(wèn)題

1.RDD到底是怎么生成的

2.具體執(zhí)行的時(shí)候破加,是否和基于Spark Core上的RDD有所不同瘦黑,runtime級(jí)別的

3.運(yùn)行之后我們對(duì)RDD如何處理。會(huì)隨batch duration不斷的產(chǎn)生RDD,內(nèi)存無(wú)法完全容納這些對(duì)象。

每個(gè)batch

duration產(chǎn)生的作業(yè)執(zhí)行完RDD之后怎么對(duì)以有的RDD進(jìn)行管理是一個(gè)問(wèn)題笛坦。

RDD生成的全生命周期:

ForEachDStream不一定會(huì)觸發(fā)job的執(zhí)行区转,會(huì)觸發(fā)job產(chǎn)生,但job真正產(chǎn)生是由timer定時(shí)器產(chǎn)生的版扩。

對(duì)DStream進(jìn)行操作其實(shí)就是對(duì)RDD進(jìn)行操作废离,是因?yàn)镈Stream就是一套R(shí)DD的模板,后面的DStream與前面的DStream有依賴(lài)關(guān)系礁芦。因?yàn)閺暮笸耙蕾?lài)所以可以推出前面的RDD(回溯)

* DStreams internally is characterized by a few basic properties:

*- A list of other DStreams that the DStream depends on

*? - A time interval at which the DStream generates an RDD

*? - A function that is used to generate an RDD after each time interval

abstract classDStream[T: ClassTag] (

@transientprivate[streaming]varssc: StreamingContext

)extendsSerializablewithLogging {

源碼

DStream

/**

* Print the first num elements of each RDD generated in this DStream. This is an output

* operator, so this DStream will be registered as an output stream and there materialized.

*/

defprint(num: Int): Unit = ssc.withScope {

defforeachFunc: (RDD[T], Time) => Unit = {

(rdd: RDD[T], time: Time) => {

valfirstNum =

rdd.take(num +1)

// scalastyle:off println

println("-------------------------------------------")

println("Time: "+ time)

println("-------------------------------------------")

firstNum.take(num).foreach(println)

if(firstNum.length > num)println("...")

println()

// scalastyle:on println}

}

foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps =false)

}

private defforeachRDD(

foreachFunc: (RDD[T], Time) => Unit,

displayInnerRDDOps: Boolean): Unit = {

newForEachDStream(this,

context.sparkContext.clean(foreachFunc,false), displayInnerRDDOps).register()

}

/**

* Get the RDD corresponding to the given time; either retrieve it from cache

* or compute-and-cache it.

*/

private[streaming]final

defgetOrCompute(time: Time): Option[RDD[T]] = {

// If RDD was already generated, then retrieve it from HashMap,

// or else compute the RDD

generatedRDDs.get(time).orElse{

// Compute the RDD if time is valid (e.g. correct time in a sliding window)

// of RDD generation, else generate nothing.

if(isTimeValid(time)) {

valrddOption =createRDDWithLocalProperties(time, displayInnerRDDOps =false) {

// Disable checks for existing output directories in jobs launched by the streaming

// scheduler, since we may need to write output to an existing directory during checkpoint

// recovery; see SPARK-4835 for more details. We need to have this call here because

// compute() might cause Spark jobs to be launched.

PairRDDFunctions.disableOutputSpecValidation.withValue(true) {

compute(time)

}

}

rddOption.foreach {casenewRDD =>

// Register the generated RDD for caching and checkpointingif(storageLevel!=

StorageLevel.NONE) {

newRDD.persist(storageLevel)

logDebug(s"Persisting RDD${newRDD.id}for time$timeto$storageLevel")

}

if(checkpointDuration!=null&&

(time -zeroTime).isMultipleOf(checkpointDuration)) {

newRDD.checkpoint()

logInfo(s"Marking RDD${newRDD.id}for time$timefor

checkpointing")

}

generatedRDDs.put(time, newRDD)

}

rddOption

}else{

None

}

}

}

/** Checks whether the 'time' is valid wrt slideDuration for generating RDD */private[streaming]defisTimeValid(time: Time): Boolean = {

if(!isInitialized) {

throw newSparkException (this+" has not been

initialized")

}else if(time <=zeroTime|| !

(time -zeroTime).isMultipleOf(slideDuration)) {

logInfo("Time "+ time +" is

invalid as zeroTime is "+zeroTime+

" and

slideDuration is "+ slideDuration +" and difference is "+ (time -zeroTime))

false}else{

logDebug("Time "+ time +" is

valid")

true}

}

SocketInputDStream繼承自ReceiverInputDStream

private[streaming]

classSocketInputDStream[T: ClassTag](

ssc_ : StreamingContext,

host:String,

port: Int,

bytesToObjects: InputStream =>Iterator[T],

storageLevel: StorageLevel

)extendsReceiverInputDStream[T](ssc_) {

ReceiverInputDStream

/**

* Generates RDDs with blocks received by the receiver of this stream. */

override

defcompute(validTime: Time):

Option[RDD[T]] = {

valblockRDD= {

if(validTime <graph.startTime) {

// If this is called for any time before the start time of the context,

// then this returns an empty RDD. This may happen when recovering from a

// driver failure without any write ahead log to recover pre-failure data.

newBlockRDD[T](ssc.sc, Array.empty)

}else{

// Otherwise, ask the tracker for all the blocks that have been allocated to this stream

// for this batch

valreceiverTracker = ssc.scheduler.receiverTrackervalblockInfos = receiverTracker.getBlocksOfBatch(validTime).getOrElse(id,Seq.empty)

// Register the input blocks information into InputInfoTrackervalinputInfo =StreamInputInfo(id, blockInfos.flatMap(_.numRecords).sum)

ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)

// Create the BlockRDDcreateBlockRDD(validTime, blockInfos)

}

}

Some(blockRDD)

}

private[streaming]defcreateBlockRDD(time: Time,

blockInfos:Seq[ReceivedBlockInfo]): RDD[T] = {

if(blockInfos.nonEmpty) {

valblockIds = blockInfos.map { _.blockId.asInstanceOf[BlockId] }.toArray

// Are WAL record handles present with all the blocksvalareWALRecordHandlesPresent = blockInfos.forall { _.walRecordHandleOption.nonEmpty }

if(areWALRecordHandlesPresent) {

// If all the blocks have WAL record handle, then create a WALBackedBlockRDDvalisBlockIdValid = blockInfos.map { _.isBlockIdValid() }.toArray

valwalRecordHandles = blockInfos.map { _.walRecordHandleOption.get }.toArray

newWriteAheadLogBackedBlockRDD[T](

ssc.sparkContext, blockIds, walRecordHandles, isBlockIdValid)

}else{

// Else, create a BlockRDD. However, if there are some blocks with WAL info but not

// others then that is unexpected and log a warning accordingly.

if(blockInfos.find(_.walRecordHandleOption.nonEmpty).nonEmpty) {

if(WriteAheadLogUtils.enableReceiverLog(ssc.conf)) {

logError("Some blocks

do not have Write Ahead Log information; "+

"this is unexpected and data may not be recoverable after

driver failures")

}else{

logWarning("Some blocks have Write Ahead Log information; this is

unexpected")

}

}

valvalidBlockIds = blockIds.filter { id =>

ssc.sparkContext.env.blockManager.master.contains(id)

}

if(validBlockIds.size != blockIds.size) {

logWarning("Some blocks could not be

recovered as they were not found in memory. "+

"To prevent such data loss, enabled Write Ahead Log (see

programming guide "+

"for more

details.")

}

newBlockRDD[T](ssc.sc, validBlockIds)

}

}else{

// If no block is ready now, creating WriteAheadLogBackedBlockRDD or BlockRDD

// according to the configuration

if(WriteAheadLogUtils.enableReceiverLog(ssc.conf)) {

newWriteAheadLogBackedBlockRDD[T](

ssc.sparkContext, Array.empty, Array.empty, Array.empty)

}else{

newBlockRDD[T](ssc.sc, Array.empty)

}

}

}

MappedDStream

private[streaming]

classMappedDStream[T: ClassTag,U: ClassTag] (

parent: DStream[T],

mapFunc:T=>U

)extendsDStream[U](parent.ssc) {

override defdependencies:List[DStream[_]] =List(parent)

override defslideDuration: Duration = parent.slideDuration

override defcompute(validTime: Time): Option[RDD[U]] = {

parent.getOrCompute(validTime).map(_.map[U](mapFunc))

}

}

ForEachDStream

private[streaming]

classForEachDStream[T: ClassTag] (

parent: DStream[T],

foreachFunc: (RDD[T], Time) => Unit,

displayInnerRDDOps: Boolean

)extendsDStream[Unit](parent.ssc) {

override defdependencies:List[DStream[_]] =List(parent)

override defslideDuration: Duration = parent.slideDuration

override defcompute(validTime: Time): Option[RDD[Unit]] = None

override defgenerateJob(time: Time): Option[Job] = {

parent.getOrCompute(time)match{

caseSome(rdd) =>

valjobFunc = () =>createRDDWithLocalProperties(time, displayInnerRDDOps) {

foreachFunc(rdd, time)

}

Some(newJob(time, jobFunc))

caseNone => None

}

}

}

備注:

資料來(lái)源于:DT_大數(shù)據(jù)夢(mèng)工廠(Spark發(fā)行版本定制)

更多私密內(nèi)容蜻韭,請(qǐng)關(guān)注微信公眾號(hào):DT_Spark

如果您對(duì)大數(shù)據(jù)Spark感興趣,可以免費(fèi)聽(tīng)由王家林老師每天晚上20:00開(kāi)設(shè)的Spark永久免費(fèi)公開(kāi)課柿扣,地址YY房間號(hào):68917580

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末湘捎,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子窄刘,更是在濱河造成了極大的恐慌窥妇,老刑警劉巖,帶你破解...
    沈念sama閱讀 211,194評(píng)論 6 490
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件娩践,死亡現(xiàn)場(chǎng)離奇詭異活翩,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)翻伺,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,058評(píng)論 2 385
  • 文/潘曉璐 我一進(jìn)店門(mén)材泄,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人吨岭,你說(shuō)我怎么就攤上這事拉宗。” “怎么了辣辫?”我有些...
    開(kāi)封第一講書(shū)人閱讀 156,780評(píng)論 0 346
  • 文/不壞的土叔 我叫張陵旦事,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我急灭,道長(zhǎng)姐浮,這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 56,388評(píng)論 1 283
  • 正文 為了忘掉前任葬馋,我火速辦了婚禮卖鲤,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘畴嘶。我一直安慰自己蛋逾,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,430評(píng)論 5 384
  • 文/花漫 我一把揭開(kāi)白布窗悯。 她就那樣靜靜地躺著区匣,像睡著了一般。 火紅的嫁衣襯著肌膚如雪蟀瞧。 梳的紋絲不亂的頭發(fā)上沉颂,一...
    開(kāi)封第一講書(shū)人閱讀 49,764評(píng)論 1 290
  • 那天条摸,我揣著相機(jī)與錄音,去河邊找鬼铸屉。 笑死钉蒲,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的彻坛。 我是一名探鬼主播顷啼,決...
    沈念sama閱讀 38,907評(píng)論 3 406
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼昌屉!你這毒婦竟也來(lái)了钙蒙?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 37,679評(píng)論 0 266
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤间驮,失蹤者是張志新(化名)和其女友劉穎躬厌,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體竞帽,經(jīng)...
    沈念sama閱讀 44,122評(píng)論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡扛施,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,459評(píng)論 2 325
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了屹篓。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片疙渣。...
    茶點(diǎn)故事閱讀 38,605評(píng)論 1 340
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖堆巧,靈堂內(nèi)的尸體忽然破棺而出妄荔,到底是詐尸還是另有隱情,我是刑警寧澤谍肤,帶...
    沈念sama閱讀 34,270評(píng)論 4 329
  • 正文 年R本政府宣布啦租,位于F島的核電站,受9級(jí)特大地震影響谣沸,放射性物質(zhì)發(fā)生泄漏刷钢。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,867評(píng)論 3 312
  • 文/蒙蒙 一乳附、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧伴澄,春花似錦赋除、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 30,734評(píng)論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至敞嗡,卻和暖如春颁糟,著一層夾襖步出監(jiān)牢的瞬間航背,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 31,961評(píng)論 1 265
  • 我被黑心中介騙來(lái)泰國(guó)打工棱貌, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留玖媚,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 46,297評(píng)論 2 360
  • 正文 我出身青樓婚脱,卻偏偏與公主長(zhǎng)得像今魔,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子障贸,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,472評(píng)論 2 348

推薦閱讀更多精彩內(nèi)容