光敏色素互作因子(PIFs)廣泛存在于苔蘚到被子植物中隆敢,并在植物從暗形態(tài)建成到光形態(tài)建成的轉(zhuǎn)化過程中發(fā)揮關(guān)鍵調(diào)控作用。PIFs直接與靶基因啟動子區(qū)域的順式作用元件結(jié)合穴墅,調(diào)控基因表達(dá),或者與其它調(diào)控因子形成復(fù)合物皇钞,共同調(diào)控靶基因表達(dá)誉结,PIFs是基因轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)中的核心,通過整合內(nèi)部和外部的信號以實(shí)現(xiàn)對植物體生長發(fā)育的調(diào)控掉盅。植物激素脫落酸(Abscisic Acid以舒,ABA)調(diào)控植物的生長發(fā)育和對逆境脅迫的響應(yīng)。ABA信號通路的很多組分已經(jīng)被鑒定出來永票。
越來越多的證據(jù)證明滥沫,ABA與PIFs轉(zhuǎn)錄因子家族在光信號通路兰绣、植物生長發(fā)育和環(huán)境適應(yīng)性方面具有協(xié)同作用。但是PIFs轉(zhuǎn)錄因子調(diào)控ABA信號轉(zhuǎn)導(dǎo)的具體機(jī)制并不清楚缀辩。
2020年4月臀玄,Biochemical and Biophysical Research Communications發(fā)表了題為“ Phytochrome-interacting factors regulate seedling growth through ABA signaling”的文章,為揭示PIFs轉(zhuǎn)錄因子調(diào)控ABA信號轉(zhuǎn)導(dǎo)機(jī)制提供了重要線索荣恐。
研究結(jié)果
1. PIFs轉(zhuǎn)錄因子在擬南芥各器官中廣泛表達(dá)并且受到ABA調(diào)控
通過RT-qPCR發(fā)現(xiàn)PIF1, PIF3, PIF4和PIF5在多種組織器官和發(fā)育階段均有表達(dá)叠穆。ABA處理后畦浓,PIF1, PIF3和PIF4的表達(dá)水平升高,但是PIF5的表達(dá)受到抑制祷嘶。
2.?pif突變體在幼苗生長期對脫落酸不敏感
首先構(gòu)建了pif1, pif3, pif4, pif5, pif3/4/5, pif1/3/4/5和pif1/3/4突變體并對突變效果進(jìn)行了驗(yàn)證。將突變體和野生型種子在含有ABA的培養(yǎng)基中培養(yǎng)烛谊,與野生型相比嘉汰,pif突變體在幼苗生長階段鞋怀,呈現(xiàn)出對ABA脫敏的表型。
3. 過表達(dá)PIF3和PIF5增強(qiáng)了幼苗對脫落酸的敏感性
為進(jìn)一步驗(yàn)證PIFs轉(zhuǎn)錄因子在ABA信號通路中的作用焙矛,將PIF3和PIF5的過表達(dá)株系在ABA的培養(yǎng)基中培養(yǎng)残腌,與野生型相比抛猫,過表達(dá)植株的生長受到明顯抑制,呈現(xiàn)出對ABA超敏感的表型闺金。
4. 通過DAP-seq分析在基因組水平上鑒定PIF3和PIF5轉(zhuǎn)錄因子在DNA上的結(jié)合位點(diǎn)
已經(jīng)有多項(xiàng)研究掖看,使用ChIP-seq面哥,對PIFs轉(zhuǎn)錄因子在基因組水平的結(jié)合位點(diǎn)進(jìn)行了鑒定尚卫,但是ChIP-seq方法受限于特異性抗體的質(zhì)量,并且操作復(fù)雜刹泄,實(shí)驗(yàn)難度大怎爵。本研究使用了一種新的方法:DAP-seq(DNA親和純化測序)對PIF3和PIF5在基因組上結(jié)合位點(diǎn)進(jìn)行了鑒定。最終鑒定出PIF的保守motif為G-box姆蘸,與已有的研究結(jié)果一致,并且鑒定出一批ABA響應(yīng)的基因是PIFs的下游靶基因狂秦,比如PYL3推捐,PYL6, PYL12, SnRK2.2, CPK4, CPK6, ABI5, ABF3和KIN1。2020年2月堪簿,在Molecular Plant期刊上皮壁,使用酵母單雜交、EMSA等技術(shù)甜孤,證明PIF1畏腕、PIP4和PIF5能夠結(jié)合到ABI5啟動子區(qū)的G-box上(Qi et al., 2020)。DAP-Seq的結(jié)果把夸,與此結(jié)果相互印證铭污。本研究證明了DAP-seq的可行性和有效性嘹狞。
討論
該研究通過DAP-seq鑒定出很多與ABA相關(guān)的PIFs靶基因磅网、參與ABA合成的基因通路以及ABA信號轉(zhuǎn)導(dǎo)通路中的組分。揭示了PIFs參與ABA信號轉(zhuǎn)導(dǎo)的機(jī)制并非簡單的單向調(diào)節(jié)涧偷,還存在反饋調(diào)控閉環(huán)燎潮。
合作文章:
Zhang SL, Wang L, Yao J, Wu N, Ahmad B, Nocker S, Wu JY, Abudureheman R, Li Z, Wang XP. Control of ovule development in Vitis vinifera by VvMADS28 and interacting genes. Horticulture Research. 2023. doi: 10.1093/hr/uhad070.?(IF=7.291)?
Wang L, Tian T, Liang J, Li R, Xin X, Qi Y, Zhou Y, Fan Q, Ning G, Becana M, Duanmu D. A transcription factor of the NAC family regulates nitrate-induced legume nodule senescence. New Phytol. 2023 Mar 22. doi: 10.1111/nph.18896. (IF=10.323)
Sun Y, Han Y, Sheng K, Yang P, Cao Y, Li H, Zhu QH, Chen J, Zhu S, Zhao T. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickii. Mol Plant. 2023. doi: 10.1016/j.molp.2023.02.005. (IF=21.949)?
Liu Y, Liu Q, Li X, Zhang Z, Ai S, Liu C, Ma F, Li C. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63. Plant Physiol. 2023. doi: 10.1093/plphys/kiad057. (IF=8.005)?
Liu YN, Wu FY, Tian RY, Shi YX, Xu ZQ, Liu JY, Huang J, Xue FF, Liu BY, Liu GQ. The bHLH-zip transcription factor SREBP regulates triterpenoid and lipid metabolisms in the medicinal fungus Ganoderma lingzhi. Commun Biol. 2023. doi: 10.1038/s42003-022-04154-6. (IF=6.548)
Liu L, Chen G, Li S, Gu Y, Lu L, Qanmber G, Mendu V, Liu Z, Li F, Yang Z. A brassinosteroid transcriptional regulatory network participates in regulating fiber elongation in cotton. Plant Physiol. 2022. doi: 10.1093/plphys/kiac590. (IF=8.005)
Li M, Hou L, Zhang C, Yang W, Liu X, Zhao H, Pang X, Li Y. Genome-Wide Identification of Direct Targets of ZjVND7 Reveals the Putative Roles of Whole-Genome Duplication in Sour Jujube in Regulating Xylem Vessel Differentiation and Drought Tolerance. Front Plant Sci. 2022 Feb 4;13:829765. doi: 10.3389/fpls.2022.829765. (IF=6.627)
Bi Y, Wang H, Yuan X, Yan Y, Li D, Song F. The NAC transcription factor ONAC083 negatively regulates rice immunity against Magnaporthe oryzae by directly activating transcription of the RING-H2 gene OsRFPH2-6. J Integr Plant Biol. 2022. doi: 10.1111/jipb.13399. (IF=9.106)
Guo X, Yu X, Xu Z, Zhao P, Zou L, Li W, Geng M, Zhang P, Peng M, Ruan M. CC-type glutaredoxin, MeGRXC3, associates with catalases and negatively regulates drought tolerance in cassava (Manihot esculenta Crantz). Plant Biotechnol J. 2022. doi: 10.1111/pbi.13920. (IF=13.263)
Chai Z, Fang J, Huang C, Huang R, Tan X, Chen B, Yao W, Zhang M. A novel transcription factor, ScAIL1, modulates plant defense responses by targeting DELLA and regulating gibberellin and jasmonic acid signaling in sugarcane. J Exp Bot. 2022. 73: 6727-6743. doi: 10.1093/jxb/erac339. (IF=7.298)
Li R, Zheng W, Yang R, Hu Q, Ma L, Zhang H. OsSGT1 promotes melatonin-ameliorated seed tolerance to chromium stress by affecting the OsABI5-OsAPX1 transcriptional module in rice. Plant J. 2022. 112: 151-171. doi: 10.1111/tpj.15937. (IF=5.726)
Li Q, Zhou L, Chen Y, Xiao N, Zhang D, Zhang M, Wang W, Zhang C, Zhang A, Li H, Chen J, Gao Y. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid. Plant Cell. 2022. 34: 4293-4312. doi: 10.1093/plcell/koac244. (IF=12.085)
Luo M, Lu B, Shi Y, Zhao Y, Wei Z, Zhang C, Wang Y, Liu H, Shi Y, Yang J, Song W, Lu X, Fan Y, Xu L, Wang R, Zhao J. A newly characterized allele of ZmR1 increases anthocyanin content in whole maize plant and the regulation mechanism of different ZmR1 alleles. Theor Appl Genet. 2022. 135: 3039-3055. doi: 10.1007/s00122-022-04166-0. (IF=5.574)
Wei H, Xu H, Su C, Wang X, Wang L. Rice CIRCADIAN CLOCK ASSOCIATED 1 transcriptionally regulates ABA signaling to confer multiple abiotic stress tolerance. Plant Physiol. 2022. 190: 1057-1073. doi: 10.1093/plphys/kiac196. (IF=8.005)
Tang N, Cao Z, Yang C, Ran D, Wu P, Gao H, He N, Liu G, Chen Z. A R2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides. Plant Sci. 2021. 308: 110924. doi: 10.1016/j.plantsci.2021.110924. (IF=5.363)
Liang S, Gao X, Wang Y, Zhang H, Yin K, Chen S, Zhang M, Zhao R. Phytochrome-interacting factors regulate seedling growth through ABA signaling. Biochem Biophys Res Commun. 2020. 526: 1100-1105. doi: 10.1016/j.bbrc.2020.04.011. (IF=3.322)
Yao J, Shen Z, Zhang Y, Wu X, Wang J, Sa G, Zhang Y, Zhang H, Deng C, Liu J, Hou S, Zhang Y, Zhang Y, Zhao N, Deng S, Lin S, Zhao R, Chen S. Populus euphratica WRKY1 binds the promoter of H+-ATPase gene to enhance gene expression and salt tolerance. J Exp Bot. 2020. 71: 1527-1539. doi: 10.1093/jxb/erz493. (IF=5.36)