MOVICS系列教程(二) COMP Module

前言

今天我們來(lái)演示MOVICS包的第二個(gè)模塊乐设,在上一篇推文中:MOVICS系列教程(一) GET Module分析后佑力,我們得到了乳腺癌的5個(gè)亞型澈圈,那么此模塊就是為了對(duì)這5種亞型間的分子特征進(jìn)行展示划提。

因?yàn)樾枰弦徊糠值妮敵鼋Y(jié)果挠锥,大家必須跑完上一篇推文的代碼才可以進(jìn)行本篇推文的演示代碼十兢。


主要函數(shù)

同樣的餐济,我們先來(lái)看一下這個(gè)模塊用到的函數(shù):

compSurv(): compare survival outcome and generate a Kalan-Meier curve with pairwise comparison if possible

compClinvar(): compare and summarize clinical features among different identified subtypes

compMut(): compare mutational frequency and generate an OncoPrint with significant mutations

compTMB(): compare total mutation burden among subtypes and generate distribution of Transitions and Transversions

compFGA(): compare fraction genome altered among subtypes and generate a barplot for distribution comparison

compDrugsen(): compare estimated half maximal inhibitory concentration (IC50) for drug sensitivity and generate a boxviolin for distribution comparison

compAgree(): compare agreement of current subtypes with other pre-existed classifications and generate an alluvial diagram and an agreement barplot

主要是通過(guò)比較各亞型間腫瘤的主要特征(生存分析耘擂,臨床特征,突變狀態(tài)絮姆,TMB醉冤,藥敏和一致性)秩霍,來(lái)揭示各亞型間不同的分子特征。


代碼演示

# survival comparison
surv.brca <- compSurv(moic.res         = cmoic.brca,
                      surv.info        = surv.info,
                      convt.time       = "m", # convert day unit to month
                      surv.median.line = "h", # draw horizontal line at median survival
                      xyrs.est         = c(5,10), # estimate 5 and 10-year survival
                      fig.name         = "KAPLAN-MEIER CURVE OF CONSENSUSMOIC")
圖片
# survival comparison
surv.brca <- compSurv(moic.res         = cmoic.brca,
                      surv.info        = surv.info,
                      convt.time       = "m", # convert day unit to month
                      surv.median.line = "h", # draw horizontal line at median survival
                      xyrs.est         = c(5,10), # estimate 5 and 10-year survival
                      fig.name         = "KAPLAN-MEIER CURVE OF CONSENSUSMOIC")
圖片
# mutational frequency comparison
mut.brca <- compMut(moic.res     = cmoic.brca,
                    mut.matrix   = brca.tcga$mut.status, # binary somatic mutation matrix
                    doWord       = TRUE, # generate table in .docx format
                    doPlot       = TRUE, # draw OncoPrint
                    freq.cutoff  = 0.05, # keep those genes that mutated in at least 5% of samples
                    p.adj.cutoff = 0.05, # keep those genes with adjusted p value < 0.05 to draw OncoPrint
                    innerclust   = TRUE, # perform clustering within each subtype
                    annCol       = annCol, # same annotation for heatmap
                    annColors    = annColors, # same annotation color for heatmap
                    width        = 6, 
                    height       = 2,
                    fig.name     = "ONCOPRINT FOR SIGNIFICANT MUTATIONS",
                    tab.name     = "INDEPENDENT TEST BETWEEN SUBTYPE AND MUTATION")
圖片
# compare TMB
tmb.brca <- compTMB(moic.res     = cmoic.brca,
                    maf          = maf,
                    rmDup        = TRUE, # remove duplicated variants per sample
                    rmFLAGS      = FALSE, # keep FLAGS mutations
                    exome.size   = 38, # estimated exome size
                    test.method  = "nonparametric", # statistical testing method
                    fig.name     = "DISTRIBUTION OF TMB AND TITV")
圖片
# compare FGA, FGG, and FGL
fga.brca <- compFGA(moic.res     = cmoic.brca,
                    segment      = segment,
                    iscopynumber = FALSE, # this is a segmented copy number file
                    cnathreshold = 0.2, # threshold to determine CNA gain or loss
                    test.method  = "nonparametric", # statistical testing method
                    fig.name     = "BARPLOT OF FGA")
圖片
# drug sensitivity comparison
drug.brca <- compDrugsen(moic.res    = cmoic.brca,
                         norm.expr   = fpkm[,cmoic.brca$clust.res$samID], # double guarantee sample order
                         drugs       = c("Cisplatin", "Paclitaxel"), # a vector of names of drug in GDSC
                         tissueType  = "breast", # choose specific tissue type to construct ridge regression model
                         test.method = "nonparametric", # statistical testing method
                         prefix      = "BOXVIOLIN OF ESTIMATED IC50") 
圖片
# customize the factor level for pstage
surv.info$pstage <- factor(surv.info$pstage, levels = c("TX","T1","T2","T3","T4"))

# agreement comparison (support up to 6 classifications include current subtype)
agree.brca <- compAgree(moic.res  = cmoic.brca,
                        subt2comp = surv.info[,c("PAM50","pstage")],
                        doPlot    = TRUE,
                        box.width = 0.2,
                        fig.name  = "AGREEMENT OF CONSENSUSMOIC WITH PAM50 AND PSTAGE")
圖片

總結(jié)

相信你已經(jīng)被上述各種炫酷的圖片吸引住了蚁阳,但是截止到目前為止前域,我們?nèi)匀恢皇菑谋硇蜕险页鋈橄侔┑母鱽喰烷g分子功能的不同。而如果想更深入的挖掘其背后機(jī)制韵吨,就需要找出各亞型間這些差異表達(dá)的基因是哪些,這就是MOVICS第三個(gè)模塊的作用了移宅,Immugent將會(huì)在下一次推文中進(jìn)行介紹归粉,敬請(qǐng)期待!

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末漏峰,一起剝皮案震驚了整個(gè)濱河市糠悼,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌浅乔,老刑警劉巖倔喂,帶你破解...
    沈念sama閱讀 221,635評(píng)論 6 515
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異靖苇,居然都是意外死亡席噩,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,543評(píng)論 3 399
  • 文/潘曉璐 我一進(jìn)店門贤壁,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)悼枢,“玉大人,你說(shuō)我怎么就攤上這事脾拆÷鳎” “怎么了?”我有些...
    開封第一講書人閱讀 168,083評(píng)論 0 360
  • 文/不壞的土叔 我叫張陵名船,是天一觀的道長(zhǎng)绰上。 經(jīng)常有香客問(wèn)我,道長(zhǎng)渠驼,這世上最難降的妖魔是什么蜈块? 我笑而不...
    開封第一講書人閱讀 59,640評(píng)論 1 296
  • 正文 為了忘掉前任,我火速辦了婚禮渴邦,結(jié)果婚禮上疯趟,老公的妹妹穿的比我還像新娘。我一直安慰自己谋梭,他們只是感情好信峻,可當(dāng)我...
    茶點(diǎn)故事閱讀 68,640評(píng)論 6 397
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著瓮床,像睡著了一般盹舞。 火紅的嫁衣襯著肌膚如雪产镐。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 52,262評(píng)論 1 308
  • 那天踢步,我揣著相機(jī)與錄音癣亚,去河邊找鬼。 笑死获印,一個(gè)胖子當(dāng)著我的面吹牛述雾,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播兼丰,決...
    沈念sama閱讀 40,833評(píng)論 3 421
  • 文/蒼蘭香墨 我猛地睜開眼玻孟,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了鳍征?” 一聲冷哼從身側(cè)響起黍翎,我...
    開封第一講書人閱讀 39,736評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎艳丛,沒(méi)想到半個(gè)月后匣掸,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 46,280評(píng)論 1 319
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡氮双,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,369評(píng)論 3 340
  • 正文 我和宋清朗相戀三年碰酝,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片戴差。...
    茶點(diǎn)故事閱讀 40,503評(píng)論 1 352
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡砰粹,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出造挽,到底是詐尸還是另有隱情碱璃,我是刑警寧澤,帶...
    沈念sama閱讀 36,185評(píng)論 5 350
  • 正文 年R本政府宣布饭入,位于F島的核電站嵌器,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏谐丢。R本人自食惡果不足惜爽航,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,870評(píng)論 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望乾忱。 院中可真熱鬧讥珍,春花似錦、人聲如沸窄瘟。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,340評(píng)論 0 24
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)蹄葱。三九已至氏义,卻和暖如春锄列,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背惯悠。 一陣腳步聲響...
    開封第一講書人閱讀 33,460評(píng)論 1 272
  • 我被黑心中介騙來(lái)泰國(guó)打工邻邮, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人克婶。 一個(gè)月前我還...
    沈念sama閱讀 48,909評(píng)論 3 376
  • 正文 我出身青樓筒严,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親情萤。 傳聞我的和親對(duì)象是個(gè)殘疾皇子萝风,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,512評(píng)論 2 359

推薦閱讀更多精彩內(nèi)容