1 竖般、目的
使用OpenCV函數(shù) split 將圖像分割成單通道數(shù)組踪宠。
使用OpenCV函數(shù) calcHist 計(jì)算圖像陣列的直方圖
使用OpenCV函數(shù) normalize歸一化數(shù)組
2 纯出、直方圖概念
下面兩幅圖表達(dá)直方圖概念
1 .
2 .
下面直方圖概念是基于圖像像素值坐桩,其實(shí)對(duì)圖像梯度柏卤、每個(gè)像素的角度缸夹、等一切圖像的屬性值,我們都可以建立直方圖凑懂。這個(gè)才是直方圖的概念真正意義煤痕,不過(guò)是基于圖像像素灰度直方圖是最常見的。
range 表示值得范圍脓豪,灰度值范圍為[0~255]之間
直方圖最常見的幾個(gè)屬性:
dims 表示維度接谨,對(duì)灰度圖像來(lái)說(shuō)只有一個(gè)通道值dims=1
bins 表示在維度中子區(qū)域大小劃分摆碉,bins=256,劃分為256個(gè)級(jí)別
3 巷帝、API函數(shù)
CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
split(// 把多通道圖像分為多個(gè)單通道圖像
const Mat &src, //輸入圖像
Mat* mvbegin)// 輸出的通道圖像數(shù)組
CV_EXPORTS void calcHist( const Mat* images, int nimages,
const int* channels, InputArray mask,
OutputArray hist, int dims, const int* histSize,
const float** ranges, bool uniform = true, bool accumulate = false );
calcHist(
const Mat* images,//輸入圖像指針
int images,// 圖像數(shù)目
const int* channels,// 通道數(shù)
InputArray mask,// 輸入mask,可選扫夜,不用
OutputArray hist,//輸出的直方圖數(shù)據(jù)
int dims,// 維數(shù)
const int* histsize,// 直方圖級(jí)數(shù)
const float* ranges,// 值域范圍
bool uniform,// true by default
bool accumulate// false by defaut
)
CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,
int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
src 輸入數(shù)組楞泼;
dst 輸出數(shù)組,數(shù)組的大小和原數(shù)組一致历谍;
alpha 1,用來(lái)規(guī)范值现拒,2.規(guī)范范圍,并且是下限望侈;
beta 只用來(lái)規(guī)范范圍并且是上限印蔬;//為0時(shí)則為值歸一化,否則為范圍歸一化
norm_type 歸一化選擇的數(shù)學(xué)公式類型脱衙;
dtype 當(dāng)為負(fù)侥猬,輸出在大小深度通道數(shù)都等于輸入,當(dāng)為正捐韩,輸出只在深度與輸如不同退唠,不同的地方游dtype決定;
mark 掩碼荤胁。選擇感興趣區(qū)域瞧预,選定后只能對(duì)該區(qū)域進(jìn)行操作。
4 、整體代碼測(cè)試
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace std;
using namespace cv;
int main(int argc, char** argv) {
Mat src = imread("D:\\pic/4.jpg");
if (!src.data) {
printf("could not load image...\n");
return -1;
}
char INPUT_T[] = "input image";
char OUTPUT_T[] = "histogram demo";
namedWindow(INPUT_T, CV_WINDOW_AUTOSIZE);
namedWindow(OUTPUT_T, CV_WINDOW_AUTOSIZE);
imshow(INPUT_T, src);
// 分通道顯示
vector<Mat> bgr_planes;
split(src, bgr_planes);
//imshow("single channel demo", bgr_planes[0]);
// 計(jì)算直方圖
int histSize = 256;
float range[] = { 0, 256 };
const float* histRanges = { range };
Mat b_hist, g_hist, r_hist;
calcHist(&bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRanges, true, false);
calcHist(&bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRanges, true, false);
calcHist(&bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRanges, true, false);
// 歸一化
int hist_h = 400;
int hist_w = 512;
int bin_w = hist_w / histSize;
Mat histImage(hist_w, hist_h, CV_8UC3, Scalar(0, 0, 0));
normalize(b_hist, b_hist, 0, hist_h, NORM_MINMAX, -1, Mat());
normalize(g_hist, g_hist, 0, hist_h, NORM_MINMAX, -1, Mat());
normalize(r_hist, r_hist, 0, hist_h, NORM_MINMAX, -1, Mat());
// render histogram chart
for (int i = 1; i < histSize; i++) {
line(histImage, Point((i - 1) * bin_w, hist_h - cvRound(b_hist.at<float>(i - 1))),
Point((i)*bin_w, hist_h - cvRound(b_hist.at<float>(i))), Scalar(255, 0, 0), 2, LINE_AA);
line(histImage, Point((i - 1) * bin_w, hist_h - cvRound(g_hist.at<float>(i - 1))),
Point((i)*bin_w, hist_h - cvRound(g_hist.at<float>(i))), Scalar(0, 255, 0), 2, LINE_AA);
line(histImage, Point((i - 1) * bin_w, hist_h - cvRound(r_hist.at<float>(i - 1))),
Point((i)*bin_w, hist_h - cvRound(r_hist.at<float>(i))), Scalar(0, 0, 255), 2, LINE_AA);
}
imshow(OUTPUT_T, histImage);
waitKey(0);
return 0;
}