10X單細(xì)胞空間聯(lián)合分析之五----spatialDWLS

今天我們來(lái)到了單細(xì)胞空間聯(lián)合分析的第五個(gè)部分捆等,可能有部分同學(xué)有這樣的疑問(wèn),為什么要分享和研究這么多的方法续室, 有一個(gè)不就好了么栋烤?這個(gè)問(wèn)題,說(shuō)明你站的高度還需要提升挺狰。好了明郭,開(kāi)始我們今天的分享,單細(xì)胞和空間聯(lián)合分析的方法----spatialDWLS

文章在SpatialDWLS: accurate deconvolution of spatial transcriptomic data,目前處于前發(fā)的狀態(tài)丰泊,中國(guó)人寫(xiě)的薯定,里面用到的方法也是解卷積,大家要對(duì)比之前分享的方法SPOTlight一起對(duì)比學(xué)習(xí)瞳购,我們這里關(guān)注重點(diǎn)话侄。

基礎(chǔ)知識(shí)部分

一、為什么不能利用bulk-seq數(shù)據(jù)解卷積方法学赛,直接對(duì)空間轉(zhuǎn)錄組數(shù)據(jù)進(jìn)行解卷積年堆??
(1)the number of cells within each spot is typically small. For example, each spot in the 10X Genomics Visium platform has the diameter of 55 μm, corresponding to a spatial resolution of 5-10 cells. The application of a bulk RNAseq deconvolution method to such a small sample size would result in noise from unrelated cell types罢屈。(noise
(2)as spatial expression datasets usually contain thousands of spots, it would be time and memory consuming if deconvolution methods designed for bulk RNA-seq were applied on spatial expression datasets.(第二個(gè)原因還是次要的嘀韧,主要是第一個(gè))
二、spatialDWLS的分析原理
(1)it identifies cell types that likely to be present at each location by using a recently developed cell-type enrichment analysis method(注意這里用到了一種富集方法缠捌,算法中我們探討一下)锄贷。
(2)the cell type composition at each location is inferred by extending the dampened weighted least squares (DWLS) method译蒂,which was originally developed for deconvolving bulk RNAseq data(我們先來(lái)記住這個(gè)簡(jiǎn)單的過(guò)程)。

圖片.png

三谊却、spatialDWLS方法的評(píng)估
the Root Mean Square Error (RMSE) associated with oligodendrocytes is only 0.03 with the predicted values approximately center around ground-truth柔昼。
這里有一個(gè)Root Mean Square Error (RMSE),大家可以參考均方根誤差炎辨。
圖片.png

可見(jiàn)方法中對(duì)之前介紹的SPOTlight進(jìn)行了比較捕透。

圖片.png

這里提一句,文章寫(xiě)肯定自己的方法最好碴萧,但是乙嘀,我們要甄別

四破喻、運(yùn)用驗(yàn)證虎谢,這里就列舉其中的一個(gè)例子
During embryonic development, the spatial-temporal distribution of cell types changes
dramatically. Therefore, it is of interest to test whether spatialDWLS could aid the discovery of such dynamic changes. Recently, Asp and colleagues studied the development of human heart in early embryos (4.5–5, 6.5, and 9 post-conception weeks) by using the Spatial Transcriptomics (ST) technology。 Since the data does not have single-cell resolution, they were not able to identify cell-type distribution directly from the ST data. In order to apply spatialDWLS, we utilized the single-cell RNAseq derived gene signatures from this study as reference. All the cell types were mapped to expected locations .


圖片.png

In order to quantitatively compare the change of spatial-temporal organization of cell type composition during embryonic heart development, we first examined the overall abundance of different cell types


圖片.png

有些細(xì)胞增多了曹质,有些細(xì)胞減少了(聯(lián)合分析的結(jié)果看)婴噩,總之,結(jié)果很好羽德,大家嘗試(作者的觀點(diǎn))几莽。

這里我們要重點(diǎn)關(guān)注一點(diǎn)文章的方法了。

Cell type selection of spatial expression data by enrichment analysis We use an enrichment based weighted least squares approach for deconvolution of spatial

expression datasets
(1)enrichment analysis using Parametric Analysis of Gene Set Enrichment (PAGE) method22 is applied on spatial expression dataset as previously reported宅静。這里的富集方法就是GSEA章蚣。The marker genes can be identified via differential expression gene analysis of Giotto based on the single cell RNA-seq data provided by users(單細(xì)胞數(shù)據(jù)提供的marker,感覺(jué)有點(diǎn)Low坏为,)究驴。Alternatively, users can also provide marker gene expression for each cell type for deconvolution.(或者自己提供marker,更扯了)匀伏。
細(xì)胞marker gene的數(shù)量為m洒忧,對(duì)于每個(gè)基因,我們將倍數(shù)變化計(jì)算為每個(gè)點(diǎn)的表達(dá)值與所有點(diǎn)的平均表達(dá)之比够颠,The mean and standard deviation of the fold change values are defined as μ and δ, respectively.In addition, we calculate the mean fold change of the m marker genes, which is defined as Sm. The enrichment score (ES) is defined as follows:


圖片.png

Then, we binarize the enrichment matrix with the cutoff value of ES = 2 to select cell types that are likely to be present at each point.
恕我直言熙侍,這個(gè)富集方法,很飄啊履磨。

Estimating cell type composition by using a weighted least squares approach

In previous work, we developed dampened weighted least squares (DWLS) for deconvolution of single-cell RNAseq data.(這個(gè)方法大家可以查一下)蛉抓,This method is extended here to deconvolve spatial transcriptomic data using the signature gene identification step described above. In short, DWLS uses a weighted least squares approach to infer cell-type composition, where the weight is selected to minimize the overall relative error rate. In addition, a damping constant d is used to enhance numerical stability, whose value is determined by using a cross-validation procedure. Here, we use the same sets of weights and damping constant across spots within same clusters to reduce technical variation. Finally, since the number of cells present at each spot is generally small, we perform another round deconvolution by remove those cell types that are predicted to present at a low frequency by imposing an additional thresholding (min frequency = 0.02 by default).(這個(gè)地方還是需要涉及到算法,大家可以深入)剃诅。

最后來(lái)一張效果圖


圖片.png

這個(gè)方法在spatialDWLS,代碼都很簡(jiǎn)單巷送,只需要關(guān)注一個(gè)函數(shù)runDWLSDeconv,算法才是精髓矛辕。

生活很好笑跛,有你更好1

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
禁止轉(zhuǎn)載付魔,如需轉(zhuǎn)載請(qǐng)通過(guò)簡(jiǎn)信或評(píng)論聯(lián)系作者。
  • 序言:七十年代末飞蹂,一起剝皮案震驚了整個(gè)濱河市几苍,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌陈哑,老刑警劉巖妻坝,帶你破解...
    沈念sama閱讀 206,013評(píng)論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異惊窖,居然都是意外死亡刽宪,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,205評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門(mén)界酒,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)纠屋,“玉大人,你說(shuō)我怎么就攤上這事盾计。” “怎么了赁遗?”我有些...
    開(kāi)封第一講書(shū)人閱讀 152,370評(píng)論 0 342
  • 文/不壞的土叔 我叫張陵署辉,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我岩四,道長(zhǎng)哭尝,這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 55,168評(píng)論 1 278
  • 正文 為了忘掉前任剖煌,我火速辦了婚禮材鹦,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘耕姊。我一直安慰自己桶唐,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,153評(píng)論 5 371
  • 文/花漫 我一把揭開(kāi)白布茉兰。 她就那樣靜靜地躺著尤泽,像睡著了一般。 火紅的嫁衣襯著肌膚如雪规脸。 梳的紋絲不亂的頭發(fā)上坯约,一...
    開(kāi)封第一講書(shū)人閱讀 48,954評(píng)論 1 283
  • 那天,我揣著相機(jī)與錄音莫鸭,去河邊找鬼闹丐。 笑死,一個(gè)胖子當(dāng)著我的面吹牛被因,可吹牛的內(nèi)容都是我干的卿拴。 我是一名探鬼主播衫仑,決...
    沈念sama閱讀 38,271評(píng)論 3 399
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼巍棱!你這毒婦竟也來(lái)了惑畴?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 36,916評(píng)論 0 259
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤航徙,失蹤者是張志新(化名)和其女友劉穎如贷,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體到踏,經(jīng)...
    沈念sama閱讀 43,382評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡杠袱,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,877評(píng)論 2 323
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了窝稿。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片楣富。...
    茶點(diǎn)故事閱讀 37,989評(píng)論 1 333
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖伴榔,靈堂內(nèi)的尸體忽然破棺而出纹蝴,到底是詐尸還是另有隱情,我是刑警寧澤踪少,帶...
    沈念sama閱讀 33,624評(píng)論 4 322
  • 正文 年R本政府宣布塘安,位于F島的核電站,受9級(jí)特大地震影響援奢,放射性物質(zhì)發(fā)生泄漏兼犯。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,209評(píng)論 3 307
  • 文/蒙蒙 一集漾、第九天 我趴在偏房一處隱蔽的房頂上張望切黔。 院中可真熱鬧,春花似錦具篇、人聲如沸纬霞。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 30,199評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)险领。三九已至,卻和暖如春秒紧,著一層夾襖步出監(jiān)牢的瞬間绢陌,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 31,418評(píng)論 1 260
  • 我被黑心中介騙來(lái)泰國(guó)打工熔恢, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留脐湾,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 45,401評(píng)論 2 352
  • 正文 我出身青樓叙淌,卻偏偏與公主長(zhǎng)得像秤掌,于是被迫代替她去往敵國(guó)和親愁铺。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,700評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容