很不幸矢沿,沒人能告訴你母體是什么削樊,你只能自己體會(huì) -- 駭客帝國
在第四章“可視效果”中豁生,我們研究了一些增強(qiáng)圖層和它的內(nèi)容顯示效果的一些技術(shù),在這一章中,我們將要研究可以用來對圖層旋轉(zhuǎn)沛硅,擺放或者扭曲的CGAffineTransform眼刃,以及可以將扁平物體轉(zhuǎn)換成三維空間對象的CATransform3D(而不是僅僅對圓角矩形添加下沉陰影)。
-
仿射變換
在第三章“圖層幾何學(xué)”中摇肌,我們使用了UIView的transform屬性旋轉(zhuǎn)了鐘的指針,但并沒有解釋背后運(yùn)作的原理仪际,實(shí)際上UIView的transform屬性是一個(gè)CGAffineTransform類型围小,用于在二維空間做旋轉(zhuǎn),縮放和平移树碱。CGAffineTransform是一個(gè)可以和二維空間向量(例如CGPoint)做乘法的3X2的矩陣(見圖5.1)肯适。
用CGPoint的每一列和CGAffineTransform矩陣的每一行對應(yīng)元素相乘再求和,就形成了一個(gè)新的CGPoint類型的結(jié)果成榜。要解釋一下圖中顯示的灰色元素框舔,為了能讓矩陣做乘法,左邊矩陣的列數(shù)一定要和右邊矩陣的行數(shù)個(gè)數(shù)相同赎婚,所以要給矩陣填充一些標(biāo)志值刘绣,使得既可以讓矩陣做乘法,又不改變運(yùn)算結(jié)果挣输,并且沒必要存儲(chǔ)這些添加的值纬凤,因?yàn)樗鼈兊闹挡粫?huì)發(fā)生變化,但是要用來做運(yùn)算撩嚼。
因此停士,通常會(huì)用3×3(而不是2×3)的矩陣來做二維變換,你可能會(huì)見到3行2列格式的矩陣完丽,這是所謂的以列為主的格式恋技,圖5.1所示的是以行為主的格式,只要能保持一致逻族,用哪種格式都無所謂蜻底。
當(dāng)對圖層應(yīng)用變換矩陣,圖層矩形內(nèi)的每一個(gè)點(diǎn)都被相應(yīng)地做變換瓷耙,從而形成一個(gè)新的四邊形的形狀朱躺。CGAffineTransform中的“仿射”的意思是無論變換矩陣用什么值,圖層中平行的兩條線在變換之后任然保持平行搁痛,CGAffineTransform可以做出任意符合上述標(biāo)注的變換长搀,圖5.2顯示了一些仿射的和非仿射的變換:
仿射和非仿射變換
創(chuàng)建一個(gè)CGAffineTransform
對矩陣數(shù)學(xué)做一個(gè)全面的闡述就超出本書的討論范圍了,不過如果你對矩陣完全不熟悉的話鸡典,矩陣變換可能會(huì)使你感到畏懼源请。幸運(yùn)的是,Core Graphics提供了一系列函數(shù),對完全沒有數(shù)學(xué)基礎(chǔ)的開發(fā)者也能夠簡單地做一些變換谁尸。如下幾個(gè)函數(shù)都創(chuàng)建了一個(gè)CGAffineTransform實(shí)例:
CGAffineTransformMakeRotation(CGFloat angle) CGAffineTransformMakeScale(CGFloat sx, CGFloat sy) CGAffineTransformMakeTranslation(CGFloat tx, CGFloat ty)
旋轉(zhuǎn)和縮放變換都可以很好解釋--分別旋轉(zhuǎn)或者縮放一個(gè)向量的值舅踪。平移變換是指每個(gè)點(diǎn)都移動(dòng)了向量指定的x或者y值--所以如果向量代表了一個(gè)點(diǎn),那它就平移了這個(gè)點(diǎn)的距離良蛮。
我們用一個(gè)很簡單的項(xiàng)目來做個(gè)demo抽碌,把一個(gè)原始視圖旋轉(zhuǎn)45度角度(圖5.3)
UIView可以通過設(shè)置transform屬性做變換,但實(shí)際上它只是封裝了內(nèi)部圖層的變換决瞳。
CALayer同樣也有一個(gè)transform屬性货徙,但它的類型是CATransform3D,而不是CGAffineTransform皮胡,本章后續(xù)將會(huì)詳細(xì)解釋痴颊。CALayer對應(yīng)于UIView的transform屬性叫做affineTransform,清單5.1的例子就是使用affineTransform對圖層做了45度順時(shí)針旋轉(zhuǎn)屡贺。
清單5.1 使用affineTransform對圖層旋轉(zhuǎn)45度
@interface ViewController ()
@property (nonatomic, weak) IBOutlet UIView *layerView;
@end
@implementation ViewController
- (void)viewDidLoad
{
[super viewDidLoad];
//rotate the layer 45 degrees
CGAffineTransform transform = CGAffineTransformMakeRotation(M_PI_4);
self.layerView.layer.affineTransform = transform;
}
@end
注意我們使用的旋轉(zhuǎn)常量是M_PI_4蠢棱,而不是你想象的45,因?yàn)?a target="_blank" rel="nofollow">iOS的變換函數(shù)使用弧度而不是角度作為單位甩栈⌒合桑弧度用數(shù)學(xué)常量pi的倍數(shù)表示,一個(gè)pi代表180度谤职,所以四分之一的pi就是45度饰豺。
C的數(shù)學(xué)函數(shù)庫(iOS會(huì)自動(dòng)引入)提供了pi的一些簡便的換算,M_PI_4于是就是pi的四分之一允蜈,如果對換算不太清楚的話冤吨,可以用如下的宏做換算:
#define RADIANS_TO_DEGREES(x) ((x)/M_PI*180.0)
#define DEGREES_TO_RADIANS(x) ((x)/180.0*M_PI)
混合變換
Core Graphics提供了一系列的函數(shù)可以在一個(gè)變換的基礎(chǔ)上做更深層次的變換,如果做一個(gè)既要縮放又要旋轉(zhuǎn)的變換饶套,這就會(huì)非常有用了漩蟆。例如下面幾個(gè)函數(shù):
CGAffineTransformRotate(CGAffineTransform t, CGFloat angle)
CGAffineTransformScale(CGAffineTransform t, CGFloat sx, CGFloat sy)
CGAffineTransformTranslate(CGAffineTransform t, CGFloat tx, CGFloat ty)
當(dāng)操縱一個(gè)變換的時(shí)候,初始生成一個(gè)什么都不做的變換很重要--也就是創(chuàng)建一個(gè)CGAffineTransform
類型的空值妓蛮,矩陣論中稱作單位矩陣怠李,Core Graphics同樣也提供了一個(gè)方便的常量:
CGAffineTransformIdentity
最后,如果需要混合兩個(gè)已經(jīng)存在的變換矩陣蛤克,就可以使用如下方法捺癞,在兩個(gè)變換的基礎(chǔ)上創(chuàng)建一個(gè)新的變換:
CGAffineTransformConcat(CGAffineTransform t1, CGAffineTransform t2);
我們來用這些函數(shù)組合一個(gè)更加復(fù)雜的變換,先縮小50%构挤,再旋轉(zhuǎn)30度髓介,最后向右移動(dòng)200個(gè)像素(清單5.2)。圖5.4顯示了圖層變換最后的結(jié)果筋现。
清單5.2 使用若干方法創(chuàng)建一個(gè)復(fù)合變換
- (void)viewDidLoad
{
[super viewDidLoad]; //create a new transform
CGAffineTransform transform = CGAffineTransformIdentity; //scale by 50%
transform = CGAffineTransformScale(transform, 0.5, 0.5); //rotate by 30 degrees
transform = CGAffineTransformRotate(transform, M_PI / 180.0 * 30.0); //translate by 200 points
transform = CGAffineTransformTranslate(transform, 200, 0);
//apply transform to layer
self.layerView.layer.affineTransform = transform;
}
圖5.4中有些需要注意的地方:圖片向右邊發(fā)生了平移唐础,但并沒有指定距離那么遠(yuǎn)(200像素)箱歧,另外它還有點(diǎn)向下發(fā)生了平移。原因在于當(dāng)你按順序做了變換一膨,上一個(gè)變換的結(jié)果將會(huì)影響之后的變換呀邢,所以200像素的向右平移同樣也被旋轉(zhuǎn)了30度,縮小了50%豹绪,所以它實(shí)際上是斜向移動(dòng)了100像素价淌。
這意味著變換的順序會(huì)影響最終的結(jié)果,也就是說旋轉(zhuǎn)之后的平移和平移之后的旋轉(zhuǎn)結(jié)果可能不同森篷。
剪切變換
Core Graphics為你提供了計(jì)算變換矩陣的一些方法输钩,所以很少需要直接設(shè)置CGAffineTransform
的值。除非需要?jiǎng)?chuàng)建一個(gè)斜切的變換仲智,Core Graphics并沒有提供直接的函數(shù)。
斜切變換是放射變換的第四種類型姻氨,較于平移钓辆,旋轉(zhuǎn)和縮放并不常用(這也是Core Graphics沒有提供相應(yīng)函數(shù)的原因),但有些時(shí)候也會(huì)很有用肴焊。我們用一張圖片可以很直接的說明效果(圖5.5)前联。也許用“傾斜”描述更加恰當(dāng),具體做變換的代碼見清單5.3娶眷。
清單5.3 實(shí)現(xiàn)一個(gè)斜切變換
@implementation ViewController
CGAffineTransform CGAffineTransformMakeShear(CGFloat x, CGFloat y)
{
CGAffineTransform transform = CGAffineTransformIdentity;
transform.c = -x;
transform.b = y;
return transform;
}
- (void)viewDidLoad
{
[super viewDidLoad];
//shear the layer at a 45-degree angle
self.layerView.layer.affineTransform = CGAffineTransformMakeShear(1, 0);
}
3D變換
CG的前綴告訴我們似嗤,CGAffineTransform類型屬于Core Graphics框架,Core Graphics實(shí)際上是一個(gè)嚴(yán)格意義上的2D繪圖API届宠,并且CGAffineTransform僅僅對2D變換有效烁落。
在第三章中,我們提到了zPosition屬性豌注,可以用來讓圖層靠近或者遠(yuǎn)離相機(jī)(用戶視角)伤塌,transform屬性(CATransform3D類型)可以真正做到這點(diǎn),即讓圖層在3D空間內(nèi)移動(dòng)或者旋轉(zhuǎn)轧铁。
和CGAffineTransform類似每聪,CATransform3D也是一個(gè)矩陣,但是和2x3的矩陣不同齿风,CATransform3D是一個(gè)可以在3維空間內(nèi)做變換的4x4的矩陣(圖5.6)药薯。
對一個(gè)3D像素點(diǎn)做CATransform3D矩陣變換
和CGAffineTransform矩陣類似,Core Animation提供了一系列的方法用來創(chuàng)建和組合CATransform3D類型的矩陣救斑,和Core Graphics的函數(shù)類似童本,但是3D的平移和旋轉(zhuǎn)多處了一個(gè)z參數(shù),并且旋轉(zhuǎn)函數(shù)除了angle之外多出了x,y,z三個(gè)參數(shù)系谐,分別決定了每個(gè)坐標(biāo)軸方向上的旋轉(zhuǎn):
CATransform3DMakeRotation(CGFloat angle, CGFloat x, CGFloat y, CGFloat z)
CATransform3DMakeScale(CGFloat sx, CGFloat sy, CGFloat sz)
CATransform3DMakeTranslation(Gloat tx, CGFloat ty, CGFloat tz)
你應(yīng)該對X軸和Y軸比較熟悉了巾陕,分別以右和下為正方向(回憶第三章讨跟,這是iOS上的標(biāo)準(zhǔn)結(jié)構(gòu),在Mac OS鄙煤,Y軸朝上為正方向)晾匠,Z軸和這兩個(gè)軸分別垂直,指向視角外為正方向(圖5.7)
由圖所見梯刚,繞Z軸的旋轉(zhuǎn)等同于之前二維空間的仿射旋轉(zhuǎn)凉馆,但是繞X軸和Y軸的旋轉(zhuǎn)就突破了屏幕的二維空間,并且在用戶視角看來發(fā)生了傾斜亡资。
舉個(gè)例子:清單5.4的代碼使用了CATransform3DMakeRotation對視圖內(nèi)的圖層繞Y軸做了45度角的旋轉(zhuǎn)澜共,我們可以把視圖向右傾斜,這樣會(huì)看得更清晰锥腻。
結(jié)果見圖5.8嗦董,但并不像我們期待的那樣。
清單5.4 繞Y軸旋轉(zhuǎn)圖層
@implementation ViewController
- (void)viewDidLoad
{
[super viewDidLoad];
//rotate the layer 45 degrees along the Y axis
CATransform3D transform = CATransform3DMakeRotation(M_PI_4, 0, 1, 0);
self.layerView.layer.transform = transform;
}
@end
看起來圖層并沒有被旋轉(zhuǎn)瘦黑,而是僅僅在水平方向上的一個(gè)壓縮京革,是哪里出了問題呢?
其實(shí)完全沒錯(cuò)幸斥,視圖看起來更窄實(shí)際上是因?yàn)槲覀冊谟靡粋€(gè)斜向的視角看它匹摇,而不是透視。
透視投影
在真實(shí)世界中甲葬,當(dāng)物體遠(yuǎn)離我們的時(shí)候廊勃,由于視角的原因看起來會(huì)變小,理論上說遠(yuǎn)離我們的視圖的邊要比靠近視角的邊跟短经窖,但實(shí)際上并沒有發(fā)生坡垫,而我們當(dāng)前的視角是等距離的,也就是在3D變換中任然保持平行钠至,和之前提到的仿射變換類似葛虐。
在等距投影中,遠(yuǎn)處的物體和近處的物體保持同樣的縮放比例棉钧,這種投影也有它自己的用處(例如建筑繪圖屿脐,顛倒,和偽3D視頻)宪卿,但當(dāng)前我們并不需要的诵。
為了做一些修正,我們需要引入投影變換(又稱作z變換)來對除了旋轉(zhuǎn)之外的變換矩陣做一些修改佑钾,Core Animation并沒有給我們提供設(shè)置透視變換的函數(shù)西疤,因此我們需要手動(dòng)修改矩陣值,幸運(yùn)的是休溶,很簡單:
CATransform3D的透視效果通過一個(gè)矩陣中一個(gè)很簡單的元素來控制:m34代赁。m34(圖5.9)用于按比例縮放X和Y的值來計(jì)算到底要離視角多遠(yuǎn)扰她。
m34的默認(rèn)值是0,我們可以通過設(shè)置m34為-1.0 / d來應(yīng)用透視效果芭碍,d代表了想象中視角相機(jī)和屏幕之間的距離徒役,以像素為單位,那應(yīng)該如何計(jì)算這個(gè)距離呢窖壕?實(shí)際上并不需要忧勿,大概估算一個(gè)就好了。
因?yàn)橐暯窍鄼C(jī)實(shí)際上并不存在瞻讽,所以可以根據(jù)屏幕上的顯示效果自由決定它的防止的位置鸳吸。通常500-1000就已經(jīng)很好了,但對于特定的圖層有時(shí)候更小后者更大的值會(huì)看起來更舒服速勇,減少距離的值會(huì)增強(qiáng)透視效果晌砾,所以一個(gè)非常微小的值會(huì)讓它看起來更加失真,然而一個(gè)非常大的值會(huì)讓它基本失去透視效果烦磁,對視圖應(yīng)用透視的代碼見清單5.5贡羔,結(jié)果見圖5.10。
清單5.5 對變換應(yīng)用透視效果
@implementation ViewController
- (void)viewDidLoad
{
[super viewDidLoad];
//create a new transform
CATransform3D transform = CATransform3DIdentity;
//apply perspective
transform.m34 = - 1.0 / 500.0;
//rotate by 45 degrees along the Y axis
transform = CATransform3DRotate(transform, M_PI_4, 0, 1, 0);
//apply to layer
self.layerView.layer.transform = transform;
}
@end
滅點(diǎn)
當(dāng)在透視角度繪圖的時(shí)候个初,遠(yuǎn)離相機(jī)視角的物體將會(huì)變小變遠(yuǎn),當(dāng)遠(yuǎn)離到一個(gè)極限距離猴蹂,它們可能就縮成了一個(gè)點(diǎn)院溺,于是所有的物體最后都匯聚消失在同一個(gè)點(diǎn)。
在現(xiàn)實(shí)中磅轻,這個(gè)點(diǎn)通常是視圖的中心(圖5.11)珍逸,于是為了在應(yīng)用中創(chuàng)建擬真效果的透視,這個(gè)點(diǎn)應(yīng)該聚在屏幕中點(diǎn)聋溜,或者至少是包含所有3D對象的視圖中點(diǎn)谆膳。
Core Animation定義了這個(gè)點(diǎn)位于變換圖層的anchorPoint(通常位于圖層中心,但也有例外撮躁,見第三章)漱病。這就是說,當(dāng)圖層發(fā)生變換時(shí)把曼,這個(gè)點(diǎn)永遠(yuǎn)位于圖層變換之前anchorPoint的位置杨帽。
當(dāng)改變一個(gè)圖層的position,你也改變了它的滅點(diǎn)嗤军,做3D變換的時(shí)候要時(shí)刻記住這一點(diǎn)注盈,當(dāng)你視圖通過調(diào)整m34來讓它更加有3D效果,應(yīng)該首先把它放置于屏幕中央叙赚,然后通過平移來把它移動(dòng)到指定位置(而不是直接改變它的position)老客,這樣所有的3D圖層都共享一個(gè)滅點(diǎn)僚饭。
-
sublayerTransform屬性
如果有多個(gè)視圖或者圖層,每個(gè)都做3D變換胧砰,那就需要分別設(shè)置相同的m34值鳍鸵,并且確保在變換之前都在屏幕中央共享同一個(gè)position,如果用一個(gè)函數(shù)封裝這些操作的確會(huì)更加方便朴则,但仍然有限制(例如权纤,你不能在Interface Builder中擺放視圖),這里有一個(gè)更好的方法乌妒。
CALayer有一個(gè)屬性叫做sublayerTransform汹想。它也是CATransform3D類型,但和對一個(gè)圖層的變換不同撤蚊,它影響到所有的子圖層古掏。這意味著你可以一次性對包含這些圖層的容器做變換,于是所有的子圖層都自動(dòng)繼承了這個(gè)變換方法侦啸。
相較而言槽唾,通過在一個(gè)地方設(shè)置透視變換會(huì)很方便,同時(shí)它會(huì)帶來另一個(gè)顯著的優(yōu)勢:滅點(diǎn)被設(shè)置在容器圖層的中點(diǎn)光涂,從而不需要再對子圖層分別設(shè)置了庞萍。這意味著你可以隨意使用position
和frame來放置子圖層,而不需要把它們放置在屏幕中點(diǎn)忘闻,然后為了保證統(tǒng)一的滅點(diǎn)用變換來做平移钝计。
我們來用一個(gè)demo舉例說明。這里用Interface Builder并排放置兩個(gè)視圖(圖5.12)齐佳,然后通過設(shè)置它們?nèi)萜饕晥D的透視變換私恬,我們可以保證它們有相同的透視和滅點(diǎn),代碼見清單5.6炼吴,結(jié)果見圖5.13本鸣。
清單5.6 應(yīng)用sublayerTransform
- (void)viewDidLoad
{
[super viewDidLoad];
//apply perspective transform to container
CATransform3D perspective = CATransform3DIdentity;
perspective.m34 = - 1.0 / 500.0;
self.containerView.layer.sublayerTransform = perspective;
//rotate layerView1 by 45 degrees along the Y axis
CATransform3D transform1 = CATransform3DMakeRotation(M_PI_4, 0, 1, 0);
self.layerView1.layer.transform = transform1;
//rotate layerView2 by 45 degrees along the Y axis
CATransform3D transform2 = CATransform3DMakeRotation(-M_PI_4, 0, 1, 0);
self.layerView2.layer.transform = transform2;
}
背面
我們既然可以在3D場景下旋轉(zhuǎn)圖層,那么也可以從背面去觀察它硅蹦。如果我們在清單5.4中把角度修改為M_PI(180度)而不是當(dāng)前的M_PI_4(45度)荣德,那么將會(huì)把圖層完全旋轉(zhuǎn)一個(gè)半圈,于是完全背對了相機(jī)視角提针。
那么從背部看圖層是什么樣的呢命爬,見圖5.14
如你所見,圖層是雙面繪制的辐脖,反面顯示的是正面的一個(gè)鏡像圖片饲宛。
但這并不是一個(gè)很好的特性,因?yàn)槿绻麍D層包含文本或者其他控件嗜价,那用戶看到這些內(nèi)容的鏡像圖片當(dāng)然會(huì)感到困惑艇抠。另外也有可能造成資源的浪費(fèi):想象用這些圖層形成一個(gè)不透明的固態(tài)立方體幕庐,既然永遠(yuǎn)都看不見這些圖層的背面,那為什么浪費(fèi)GPU來繪制它們呢家淤?
CALayer有一個(gè)叫做doubleSided的屬性來控制圖層的背面是否要被繪制异剥。這是一個(gè)BOOL類型,默認(rèn)為YES絮重,如果設(shè)置為NO冤寿,那么當(dāng)圖層正面從相機(jī)視角消失的時(shí)候,它將不會(huì)被繪制青伤。
扁平化圖層
如果對包含已經(jīng)做過變換的圖層的圖層做反方向的變換將會(huì)發(fā)什么什么呢督怜?是不是有點(diǎn)困惑?見圖5.15
意做了-45度旋轉(zhuǎn)的內(nèi)部圖層是怎樣抵消旋轉(zhuǎn)45度的圖層狠角,從而恢復(fù)正常狀態(tài)的号杠。
如果內(nèi)部圖層相對外部圖層做了相反的變換(這里是繞Z軸的旋轉(zhuǎn)),那么按照邏輯這兩個(gè)變換將被相互抵消丰歌。
驗(yàn)證一下姨蟋,相應(yīng)代碼見清單5.7,結(jié)果見5.16
清單5.7 繞Z軸做相反的旋轉(zhuǎn)變換
@interface ViewController ()
@property (nonatomic, weak) IBOutlet UIView *outerView;
@property (nonatomic, weak) IBOutlet UIView *innerView;
@end
@implementation ViewController
- (void)viewDidLoad
{
[super viewDidLoad];
//rotate the outer layer 45 degrees
CATransform3D outer = CATransform3DMakeRotation(M_PI_4, 0, 0, 1);
self.outerView.layer.transform = outer;
//rotate the inner layer -45 degrees
CATransform3D inner = CATransform3DMakeRotation(-M_PI_4, 0, 0, 1);
self.innerView.layer.transform = inner;
}
@end
運(yùn)行結(jié)果和我們預(yù)期的一致×⑻現(xiàn)在在3D情況下再試一次眼溶。修改代碼,讓內(nèi)外兩個(gè)視圖繞Y軸旋轉(zhuǎn)而不是Z軸晓勇,再加上透視效果偷仿,以便我們觀察。注意不能用sublayerTransform屬性宵蕉,因?yàn)閮?nèi)部的圖層并不直接是容器圖層的子圖層,所以這里分別對圖層設(shè)置透視變換(清單5.8)节榜。
清單5.8 繞Y軸相反的旋轉(zhuǎn)變換
- (void)viewDidLoad
{
[super viewDidLoad];
//rotate the outer layer 45 degrees
CATransform3D outer = CATransform3DIdentity;
outer.m34 = -1.0 / 500.0;
outer = CATransform3DRotate(outer, M_PI_4, 0, 1, 0);
self.outerView.layer.transform = outer;
//rotate the inner layer -45 degrees
CATransform3D inner = CATransform3DIdentity;
inner.m34 = -1.0 / 500.0;
inner = CATransform3DRotate(inner, -M_PI_4, 0, 1, 0);
self.innerView.layer.transform = inner;
}
但其實(shí)這并不是我們所看到的羡玛,相反,我們看到的結(jié)果如圖5.18所示宗苍。發(fā)什么了什么呢稼稿?內(nèi)部的圖層仍然向左側(cè)旋轉(zhuǎn),并且發(fā)生了扭曲讳窟,但按道理說它應(yīng)該保持正面朝上让歼,并且顯示正常的方塊。
這是由于盡管Core Animation圖層存在于3D空間之內(nèi)丽啡,但它們并不都存在同一個(gè)3D空間谋右。每個(gè)圖層的3D場景其實(shí)是扁平化的,當(dāng)你從正面觀察一個(gè)圖層补箍,看到的實(shí)際上由子圖層創(chuàng)建的想象出來的3D場景改执,但當(dāng)你傾斜這個(gè)圖層啸蜜,你會(huì)發(fā)現(xiàn)實(shí)際上這個(gè)3D場景僅僅是被繪制在圖層的表面。
類似的辈挂,當(dāng)你在玩一個(gè)3D游戲衬横,實(shí)際上僅僅是把屏幕做了一次傾斜,或許在游戲中可以看見有一面墻在你面前终蒂,但是傾斜屏幕并不能夠看見墻里面的東西蜂林。所有場景里面繪制的東西并不會(huì)隨著你觀察它的角度改變而發(fā)生變化;圖層也是同樣的道理拇泣。
這使得用Core Animation創(chuàng)建非常復(fù)雜的3D場景變得十分困難噪叙。你不能夠使用圖層樹去創(chuàng)建一個(gè)3D結(jié)構(gòu)的層級關(guān)系--在相同場景下的任何3D表面必須和同樣的圖層保持一致,這是因?yàn)槊總€(gè)的父視圖都把它的子視圖扁平化了挫酿。
至少當(dāng)你用正常的CALayer的時(shí)候是這樣构眯,CALayer有一個(gè)叫做CATransformLayer的子類來解決這個(gè)問題。具體在第六章“特殊的圖層”中將會(huì)具體討論早龟。
固體對象
現(xiàn)在你懂得了在3D空間的一些圖層布局的基礎(chǔ)惫霸,我們來試著創(chuàng)建一個(gè)固態(tài)的3D對象(實(shí)際上是一個(gè)技術(shù)上所謂的空洞對象,但它以固態(tài)呈現(xiàn))葱弟。我們用六個(gè)獨(dú)立的視圖來構(gòu)建一個(gè)立方體的各個(gè)面壹店。
在這個(gè)例子中,我們用Interface Builder來構(gòu)建立方體的面(圖5.19)芝加,我們當(dāng)然可以用代碼來寫硅卢,但是用Interface Builder的好處是可以方便的在每一個(gè)面上添加子視圖。記住這些面僅僅是包含視圖和控件的普通的用戶界面元素藏杖,它們完全是我們界面交互的部分将塑,并且當(dāng)把它折成一個(gè)立方體之后也不會(huì)改變這個(gè)性質(zhì)。
這些面視圖并沒有放置在主視圖當(dāng)中蝌麸,而是松散地排列在根nib文件里面点寥。我們并不關(guān)心在這個(gè)容器中如何擺放它們的位置,因?yàn)楹罄m(xù)將會(huì)用圖層的transform對它們進(jìn)行重新布局来吩,并且用Interface Builder在容器視圖之外擺放他們可以讓我們?nèi)菀卓辞宄鼈兊膬?nèi)容敢辩,如果把它們一個(gè)疊著一個(gè)都塞進(jìn)主視圖,將會(huì)變得很難看弟疆。
我們把一個(gè)有顏色的UILabel放置在視圖內(nèi)部戚长,是為了清楚的辨別它們之間的關(guān)系,并且UIButton被放置在第三個(gè)面視圖里面怠苔,后面會(huì)做簡單的解釋同廉。
具體把視圖組織成立方體的代碼見清單5.9,結(jié)果見圖5.20
清單5.9 創(chuàng)建一個(gè)立方體
@interface ViewController ()
@property (nonatomic, weak) IBOutlet UIView *containerView;
@property (nonatomic, strong) IBOutletCollection(UIView) NSArray *faces;
@end
@implementation ViewController
- (void)addFace:(NSInteger)index withTransform:(CATransform3D)transform
{
//get the face view and add it to the container
UIView *face = self.faces[index];
[self.containerView addSubview:face];
//center the face view within the container
CGSize containerSize = self.containerView.bounds.size;
face.center = CGPointMake(containerSize.width / 2.0, containerSize.height / 2.0);
// apply the transform
face.layer.transform = transform;
}
- (void)viewDidLoad
{
[super viewDidLoad];
//set up the container sublayer transform
CATransform3D perspective = CATransform3DIdentity;
perspective.m34 = -1.0 / 500.0;
self.containerView.layer.sublayerTransform = perspective;
//add cube face 1
CATransform3D transform = CATransform3DMakeTranslation(0, 0, 100);
[self addFace:0 withTransform:transform];
//add cube face 2
transform = CATransform3DMakeTranslation(100, 0, 0);
transform = CATransform3DRotate(transform, M_PI_2, 0, 1, 0);
[self addFace:1 withTransform:transform];
//add cube face 3
transform = CATransform3DMakeTranslation(0, -100, 0);
transform = CATransform3DRotate(transform, M_PI_2, 1, 0, 0);
[self addFace:2 withTransform:transform];
//add cube face 4
transform = CATransform3DMakeTranslation(0, 100, 0);
transform = CATransform3DRotate(transform, -M_PI_2, 1, 0, 0);
[self addFace:3 withTransform:transform];
//add cube face 5
transform = CATransform3DMakeTranslation(-100, 0, 0);
transform = CATransform3DRotate(transform, -M_PI_2, 0, 1, 0);
[self addFace:4 withTransform:transform];
//add cube face 6
transform = CATransform3DMakeTranslation(0, 0, -100);
transform = CATransform3DRotate(transform, M_PI, 0, 1, 0);
[self addFace:5 withTransform:transform];
}
@end
從這個(gè)角度看立方體并不是很明顯;看起來只是一個(gè)方塊恤溶,為了更好地欣賞它乓诽,我們將更換一個(gè)不同的視角。
旋轉(zhuǎn)這個(gè)立方體將會(huì)顯得很笨重咒程,因?yàn)槲覀円獑为?dú)對每個(gè)面做旋轉(zhuǎn)鸠天。另一個(gè)簡單的方案是通過調(diào)整容器視圖的sublayerTransform去旋轉(zhuǎn)照相機(jī)。添加如下幾行去旋轉(zhuǎn)containerView圖層的perspective變換矩陣:
perspective = CATransform3DRotate(perspective, -M_PI_4, 1, 0, 0);
perspective = CATransform3DRotate(perspective, -M_PI_4, 0, 1, 0);
這就對相機(jī)(或者相對相機(jī)的整個(gè)場景帐姻,你也可以這么認(rèn)為)繞Y軸旋轉(zhuǎn)45度稠集,并且繞X軸旋轉(zhuǎn)45度。現(xiàn)在從另一個(gè)角度去觀察立方體饥瓷,就能看出它的真實(shí)面貌(圖5.21)剥纷。
光亮和陰影
現(xiàn)在它看起來更像是一個(gè)立方體沒錯(cuò)了,但是對每個(gè)面之間的連接還是很難分辨呢铆。Core Animation可以用3D顯示圖層晦鞋,但是它對光線并沒有概念。如果想讓立方體看起來更加真實(shí)棺克,需要自己做一個(gè)陰影效果悠垛。你可以通過改變每個(gè)面的背景顏色或者直接用帶光亮效果的圖片來調(diào)整。
如果需要?jiǎng)討B(tài)地創(chuàng)建光線效果娜谊,你可以根據(jù)每個(gè)視圖的方向應(yīng)用不同的alpha值做出半透明的陰影圖層确买,但為了計(jì)算陰影圖層的不透明度,你需要得到每個(gè)面的正太向量(垂直于表面的向量)纱皆,然后根據(jù)一個(gè)想象的光源計(jì)算出兩個(gè)向量叉乘結(jié)果湾趾。叉乘代表了光源和圖層之間的角度,從而決定了它有多大程度上的光亮派草。
清單5.10實(shí)現(xiàn)了這樣一個(gè)結(jié)果搀缠,我們用GLKit框架來做向量的計(jì)算(你需要引入GLKit庫來運(yùn)行代碼),每個(gè)面的CATransform3D都被轉(zhuǎn)換成GLKMatrix4近迁,然后通過GLKMatrix4GetMatrix3函數(shù)得出一個(gè)3×3的旋轉(zhuǎn)矩陣胡嘿。這個(gè)旋轉(zhuǎn)矩陣指定了圖層的方向,然后可以用它來得到正太向量的值钳踊。結(jié)果如圖5.22所示,試著調(diào)整LIGHT_DIRECTION和AMBIENT_LIGHT的值來切換光線效果
清單5.10 對立方體的表面應(yīng)用動(dòng)態(tài)的光線效果
#import "ViewController.h"
#import <QuartzCore/QuartzCore.h>
#import <GLKit/GLKit.h>
#define LIGHT_DIRECTION 0, 1, -0.5
#define AMBIENT_LIGHT 0.5
@interface ViewController ()
@property (nonatomic, weak) IBOutlet UIView *containerView;
@property (nonatomic, strong) IBOutletCollection(UIView) NSArray *faces;
@end
@implementation ViewController
- (void)applyLightingToFace:(CALayer *)face
{
//add lighting layer
CALayer *layer = [CALayer layer];
layer.frame = face.bounds;
[face addSublayer:layer];
//convert the face transform to matrix
//(GLKMatrix4 has the same structure as CATransform3D)
//譯者注:GLKMatrix4和CATransform3D內(nèi)存結(jié)構(gòu)一致勿侯,但坐標(biāo)類型有長度區(qū)別拓瞪,所以理論上應(yīng)該做一次float到CGFloat的轉(zhuǎn)換,感謝[@zihuyishi](https://github.com/zihuyishi)同學(xué)~
CATransform3D transform = face.transform;
GLKMatrix4 matrix4 = *(GLKMatrix4 *)&transform;
GLKMatrix3 matrix3 = GLKMatrix4GetMatrix3(matrix4);
//get face normal
GLKVector3 normal = GLKVector3Make(0, 0, 1);
normal = GLKMatrix3MultiplyVector3(matrix3, normal);
normal = GLKVector3Normalize(normal);
//get dot product with light direction
GLKVector3 light = GLKVector3Normalize(GLKVector3Make(LIGHT_DIRECTION));
float dotProduct = GLKVector3DotProduct(light, normal);
//set lighting layer opacity
CGFloat shadow = 1 + dotProduct - AMBIENT_LIGHT;
UIColor *color = [UIColor colorWithWhite:0 alpha:shadow];
layer.backgroundColor = color.CGColor;
}
- (void)addFace:(NSInteger)index withTransform:(CATransform3D)transform
{
//get the face view and add it to the container
UIView *face = self.faces[index];
[self.containerView addSubview:face];
//center the face view within the container
CGSize containerSize = self.containerView.bounds.size;
face.center = CGPointMake(containerSize.width / 2.0, containerSize.height / 2.0);
// apply the transform
face.layer.transform = transform;
//apply lighting
[self applyLightingToFace:face.layer];
}
- (void)viewDidLoad
{
[super viewDidLoad];
//set up the container sublayer transform
CATransform3D perspective = CATransform3DIdentity;
perspective.m34 = -1.0 / 500.0;
perspective = CATransform3DRotate(perspective, -M_PI_4, 1, 0, 0);
perspective = CATransform3DRotate(perspective, -M_PI_4, 0, 1, 0);
self.containerView.layer.sublayerTransform = perspective;
//add cube face 1
CATransform3D transform = CATransform3DMakeTranslation(0, 0, 100);
[self addFace:0 withTransform:transform];
//add cube face 2
transform = CATransform3DMakeTranslation(100, 0, 0);
transform = CATransform3DRotate(transform, M_PI_2, 0, 1, 0);
[self addFace:1 withTransform:transform];
//add cube face 3
transform = CATransform3DMakeTranslation(0, -100, 0);
transform = CATransform3DRotate(transform, M_PI_2, 1, 0, 0);
[self addFace:2 withTransform:transform];
//add cube face 4
transform = CATransform3DMakeTranslation(0, 100, 0);
transform = CATransform3DRotate(transform, -M_PI_2, 1, 0, 0);
[self addFace:3 withTransform:transform];
//add cube face 5
transform = CATransform3DMakeTranslation(-100, 0, 0);
transform = CATransform3DRotate(transform, -M_PI_2, 0, 1, 0);
[self addFace:4 withTransform:transform];
//add cube face 6
transform = CATransform3DMakeTranslation(0, 0, -100);
transform = CATransform3DRotate(transform, M_PI, 0, 1, 0);
[self addFace:5 withTransform:transform];
}
@end
點(diǎn)擊事件
你應(yīng)該能注意到現(xiàn)在可以在第三個(gè)表面的頂部看見按鈕了助琐,點(diǎn)擊它祭埂,什么都沒發(fā)生,為什么呢?
這并不是因?yàn)閕OS在3D場景下正確地處理響應(yīng)事件羽资,實(shí)際上是可以做到的俐巴。問題在于視圖順序九妈。在第三章中我們簡要提到過,點(diǎn)擊事件的處理由視圖在父視圖中的順序決定的呻拌,并不是3D空間中的Z軸順序。當(dāng)給立方體添加視圖的時(shí)候睦焕,我們實(shí)際上是按照一個(gè)順序添加藐握,所以按照視圖/圖層順序來說,4垃喊,5猾普,6在3的前面。
即使我們看不見4本谜,5初家,6的表面(因?yàn)楸?,2乌助,3遮了)溜在,iOS在事件響應(yīng)上仍然保持之前的順序。當(dāng)試圖點(diǎn)擊表面3上的按鈕眷茁,表面4炕泳,5,6截?cái)嗔它c(diǎn)擊事件(取決于點(diǎn)擊的位置)上祈,這就和普通的2D布局在按鈕上覆蓋物體一樣培遵。
你也許認(rèn)為把doubleSided設(shè)置成NO可以解決這個(gè)問題,因?yàn)樗辉黉秩疽晥D后面的內(nèi)容登刺,但實(shí)際上并不起作用籽腕。因?yàn)楸硨ο鄼C(jī)而隱藏的視圖仍然會(huì)響應(yīng)點(diǎn)擊事件(這和通過設(shè)置hidden
屬性或者設(shè)置alpha為0而隱藏的視圖不同,那兩種方式將不會(huì)響應(yīng)事件)纸俭。所以即使禁止了雙面渲染仍然不能解決這個(gè)問題(雖然由于性能問題皇耗,還是需要把它設(shè)置成NO)。
這里有幾種正確的方案:把除了表面3的其他視圖userInteractionEnabled屬性都設(shè)置成NO來禁止事件傳遞揍很±陕ィ或者簡單通過代碼把視圖3覆蓋在視圖6上。無論怎樣都可以點(diǎn)擊按鈕了(圖5.23)窒悔。
總結(jié)
這一章涉及了一些2D和3D的變換呜袁。你學(xué)習(xí)了一些矩陣計(jì)算的基礎(chǔ),以及如何用Core Animation創(chuàng)建3D場景简珠。你看到了圖層背后到底是如何呈現(xiàn)的阶界,并且知道了不能把扁平的圖片做成真實(shí)的立體效果,最后我們用demo說明了觸摸事件的處理,視圖中圖層添加的層級順序會(huì)比屏幕上顯示的順序更有意義膘融。
第六章我們會(huì)研究一些Core Animation提供不同功能的具體的CALayer子類