PointSIFT 閱讀筆記

Abstract

Specifically, an orientation-encoding unit is designed to describe eight crucial orientations, and multi-scale representation is achieved by stacking several orientation-encoding units. 具體地狭姨,一個(gè)方向編碼單元被設(shè)計(jì)來(lái)描述八個(gè)關(guān)鍵的方向,并且通過(guò)堆疊幾個(gè)方向編碼單元來(lái)實(shí)現(xiàn)多尺度表示法。

1. Introduction

在3D物體分類(lèi)、3D物體偵測(cè)和3D語(yǔ)義分割這些任務(wù)中,對(duì)點(diǎn)云進(jìn)行語(yǔ)義標(biāo)注的3D語(yǔ)義分割是比較有挑戰(zhàn)性的檬贰。?

Firstly, the sparseness of point cloud in 3D space makes most spatial operators inefficient. 首先,點(diǎn)云在三維空間中的稀疏性使得大部分空間算子效率低下。

Moreover, the relationship between points is implicit and difficult to be represented due to the unordered and unstructured property of point cloud. 其次锋玲,由于點(diǎn)云的無(wú)序性和非結(jié)構(gòu)化,點(diǎn)與點(diǎn)之間的關(guān)系是隱式的涵叮,難以表示惭蹂。

有幾種解決方法:handcrafted voxel feature & 2D CNN features from RGBD images。

Additionally, there is a dilemma between 2D convolution and 3D convolution: 2D convolution fails to capture 3D geometry information such as normal and shape while 3D convolution requires heavy computation. 另外割粮,在二維卷積和三維卷積之間存在一個(gè)兩難的問(wèn)題:二維卷積無(wú)法捕捉到法線盾碗、形狀等三維幾何信息,而三維卷積需要大量的計(jì)算舀瓢。

Recently, PointNet architecture [22] directly operates on point cloud instead of 3D voxel grid or mesh. It not only accelerates computation but also notably improves the segmentation performance.?最近廷雅,PointNet體系結(jié)構(gòu)[22]直接運(yùn)行在點(diǎn)云上,而不是3D體素網(wǎng)格或網(wǎng)格京髓。它不僅加快了計(jì)算速度榜轿,而且顯著提高了分割性能。

We get inspiration from the successful feature detection algorithm Scale-invariant feature transform (SIFT) [15] which involves two key properties: scale-awareness and orientation-encoding.

we design a novel module called PointSIFT for 3D understanding that possesses the properties.

The basic building block of our PointSIFT module is an orientation-encoding (OE) unit that convolves the features of the nearest points in 8 orientations.?我們的PointSIFT模塊的基本構(gòu)件是一個(gè)方向編碼(OE)單元朵锣,它在8個(gè)方向上卷積最近點(diǎn)的特征谬盐。

In comparison to K-nearest neighbor search in PointNet++ [24] where K neighbors may fall in one orientation, our OE unit captures information of all orientations. We further stack several OE units in one PointSIFT module for representation of different scales.??與PointNet++[24]中的K近鄰搜索(其中K個(gè)近鄰可能位于一個(gè)方向)相比,我們的OE單元捕獲所有方向的信息诚些。我們進(jìn)一步堆疊幾個(gè)OE單位在一個(gè)PointSIFT模塊表示不同的比例飞傀。

In order to make the whole architecture scale-aware, we connect these OE units by shortcuts and jointly optimize for adaptive scales.?為了使整個(gè)架構(gòu)具有尺度感知能力,我們通過(guò)快捷方式將這些OE單元連接起來(lái)诬烹,共同優(yōu)化自適應(yīng)尺度砸烦。

We further build a hierarchical architecture that recursively applies the PointSIFT module as local feature descriptor.?我們進(jìn)一步構(gòu)建了遞歸應(yīng)用PointSIFT模塊作為局部特征描述符的層次結(jié)構(gòu)。

Resembling conventional segmentation framework in 2D [26] and 3D [24], our two-stage network first downsamples the point cloud for effective calculation and then upsamples to get dense predictions.?與傳統(tǒng)的二維[26]和三維[24]分割框架類(lèi)似绞吁,我們的兩階段網(wǎng)絡(luò)首先對(duì)點(diǎn)云進(jìn)行降采樣以進(jìn)行有效計(jì)算幢痘,然后再對(duì)點(diǎn)云進(jìn)行上采樣以獲得稠密預(yù)測(cè)。

3. Problem Statement

4. Our Method

encode-decode (downsample-upsample) framework

In the downsampling stage, we recursivelyapply our proposed PointSIFT module combined with setabstraction (SA) module introduced in [24] for hierarchicalfeature embedding.?

For upsampling stage dense feature isenabled by effectively interleaving feature propagation (FP)module [24] with PointSIFT module.?

4.1. PointSIFT Module

Given an n * d matrix as input which describes a point set of size n with d dimension feature for every point, PointSIFT module outputs an n * d matrix that assigns a new d dimension feature to every point.

4.1.1 Orientation-encoding

Local descriptors in previous methods typically apply unordered operation (e.g., max pooling [24, 32]) based on the observation that point cloud is unordered and unstructured.

However, using ordered operator could be much more informative(max pooling discards all inputs except for the maximum) while still preserves the invariance to order ofinput points.?然而家破,使用有序操作符可以提供更多的信息(最大池丟棄除最大值以外的所有輸入)颜说,同時(shí)仍然保持輸入點(diǎn)的順序不變购岗。

One natural ordering for point cloud is the one induced by the ordering of the three coordinates.?點(diǎn)云的一種自然排序是由三個(gè)坐標(biāo)的排序?qū)С龅摹his observation leads us to the Orientation-encoding(OE) unit which is a point-wise local feature descriptor that encodes information of eight orientations.

The first stage of OE embedding is Stacked 8-eighborhood(S8N) Search which finds nearest neighbors in each of the eight octants partitioned by ordering of three coordinates.?該算法的第一個(gè)階段是8-鄰域(S8N)搜索门粪,通過(guò)三個(gè)坐標(biāo)的排序喊积,在每個(gè)分區(qū)中找到最近的鄰域。

Since distant points provides little information for description of local patterns, when no point exists within searching radius r in some octant, we duplicate p0 as the nearest neighbor of itself.?由于距離遠(yuǎn)的點(diǎn)提供的局部模式描述信息較少玄妈,當(dāng)某個(gè)八分域的搜索半徑r內(nèi)沒(méi)有點(diǎn)存在時(shí)乾吻,我們將p0復(fù)制為其最近鄰。

We further process features of those neighbors which resides in a 2 * 2 * 2 cube for local pattern description centering at p0.?我們進(jìn)一步處理位于2 * 2 * 2立方體內(nèi)的鄰居的特征拟蜻,以p0為中心進(jìn)行局部模式描述绎签。

Many previous works ignore the structure of data and do max pooling on feature vectors along d dimensions to get new features. However, we believe that ordered operators such as convolution can better exploit the structure of data. Thus we propose orientation-encoding convolution which is a three-stage operator that convolves the 2 * 2 * 2 cube along X, Y , and Z axis successively.?

4.1.2 Scale-awareness

stacking several Orientation-encoding (OE) units in PointSIFT module









?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市酝锅,隨后出現(xiàn)的幾起案子诡必,更是在濱河造成了極大的恐慌,老刑警劉巖屈张,帶你破解...
    沈念sama閱讀 206,968評(píng)論 6 482
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異袱巨,居然都是意外死亡阁谆,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,601評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門(mén)愉老,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)场绿,“玉大人,你說(shuō)我怎么就攤上這事嫉入⊙娴粒” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 153,220評(píng)論 0 344
  • 文/不壞的土叔 我叫張陵咒林,是天一觀的道長(zhǎng)熬拒。 經(jīng)常有香客問(wèn)我,道長(zhǎng)垫竞,這世上最難降的妖魔是什么澎粟? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 55,416評(píng)論 1 279
  • 正文 為了忘掉前任,我火速辦了婚禮欢瞪,結(jié)果婚禮上活烙,老公的妹妹穿的比我還像新娘。我一直安慰自己遣鼓,他們只是感情好啸盏,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,425評(píng)論 5 374
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著骑祟,像睡著了一般回懦。 火紅的嫁衣襯著肌膚如雪气笙。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 49,144評(píng)論 1 285
  • 那天粉怕,我揣著相機(jī)與錄音健民,去河邊找鬼。 笑死贫贝,一個(gè)胖子當(dāng)著我的面吹牛秉犹,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播稚晚,決...
    沈念sama閱讀 38,432評(píng)論 3 401
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼崇堵,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了客燕?” 一聲冷哼從身側(cè)響起鸳劳,我...
    開(kāi)封第一講書(shū)人閱讀 37,088評(píng)論 0 261
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎也搓,沒(méi)想到半個(gè)月后赏廓,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 43,586評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡傍妒,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,028評(píng)論 2 325
  • 正文 我和宋清朗相戀三年幔摸,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片颤练。...
    茶點(diǎn)故事閱讀 38,137評(píng)論 1 334
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡既忆,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出嗦玖,到底是詐尸還是另有隱情患雇,我是刑警寧澤,帶...
    沈念sama閱讀 33,783評(píng)論 4 324
  • 正文 年R本政府宣布宇挫,位于F島的核電站苛吱,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏器瘪。R本人自食惡果不足惜又谋,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,343評(píng)論 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望娱局。 院中可真熱鬧彰亥,春花似錦、人聲如沸衰齐。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 30,333評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至废酷,卻和暖如春瘟檩,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背澈蟆。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 31,559評(píng)論 1 262
  • 我被黑心中介騙來(lái)泰國(guó)打工墨辛, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人趴俘。 一個(gè)月前我還...
    沈念sama閱讀 45,595評(píng)論 2 355
  • 正文 我出身青樓睹簇,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親寥闪。 傳聞我的和親對(duì)象是個(gè)殘疾皇子太惠,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,901評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi閱讀 7,294評(píng)論 0 10
  • **2014真題Directions:Read the following text. Choose the be...
    又是夜半驚坐起閱讀 9,399評(píng)論 0 23
  • 1.事件:先生陪我去銀行學(xué)習(xí)從ATM機(jī)取錢(qián) 2.感受:開(kāi)心,幸福疲憋,快樂(lè) 3.思維:以前用銀行卡從ATM機(jī)取錢(qián)時(shí)吞過(guò)...
    傲霜秋菊1103閱讀 105評(píng)論 0 2
  • 今天晚上培訓(xùn)關(guān)于自動(dòng)變速箱的專業(yè)知識(shí) 多 學(xué)習(xí) 讓自己更加專業(yè) 讓客戶更相信自己
    呵呵_206a閱讀 125評(píng)論 0 0
  • 首先按照通常的思路凿渊,在option中添加a標(biāo)簽,發(fā)現(xiàn)沒(méi)有作用缚柳,頁(yè)面不會(huì)跳轉(zhuǎn)埃脏。然后考慮使用JavaScript進(jìn)行模...
    Ruby君閱讀 1,547評(píng)論 0 0