NGS原理- 單細(xì)胞轉(zhuǎn)錄組測(cè)序-橫評(píng)13種單細(xì)胞測(cè)序以及單細(xì)胞核測(cè)序方法

來(lái)源于 Benchmarking single-cell RNA-sequencing protocols for cell atlas projects

對(duì)比了13 commonly used scRNA-seq and single-nucleus RNA-seq的方法對(duì)比,也算是各有千秋研乒。結(jié)果來(lái)看繁成,不盡相同佛致。在采用方法策略時(shí)候袭灯,還是要結(jié)合自己的課題煤搜,選擇合適的方法坝初,不能亂來(lái)咪笑。

摘要

單細(xì)胞RNA測(cè)序(scRNA-seq)是一項(xiàng)用于分辨樣本中單細(xì)胞水平轉(zhuǎn)錄組的領(lǐng)先技術(shù)可帽。最新的一些protocols可hold住成千上萬(wàn)級(jí)別單細(xì)胞的測(cè)序,并已經(jīng)被用于展示組織器官和生物體水平的cell atlases窗怒。然而映跟,這些不同的protocols在RNA捕獲效率、捕獲偏倚程度扬虚、單細(xì)胞規(guī)模和建庫(kù)成本方面存在很大差異努隙,它們?cè)诓煌瑧?yīng)用方向中的相對(duì)優(yōu)劣性尚不很清楚。
本研究生成了一個(gè)基準(zhǔn)數(shù)據(jù)集孔轴,用以系統(tǒng)地評(píng)估這些單細(xì)胞測(cè)序的protocols在全面單細(xì)胞類型分辨能力和狀態(tài)方面的能力剃法。我們進(jìn)行了一項(xiàng)多中心研究,用混合多種細(xì)胞的異質(zhì)參考樣本路鹰,對(duì)13種常用的scRNA-seq和單核RNA-seq protocol 進(jìn)行了評(píng)測(cè)贷洲。比較分析顯示各個(gè)protocols性能有顯著差異。這些protocols在文庫(kù)的復(fù)雜性和檢測(cè)細(xì)胞類型markers的能力上有所不同晋柱,這些指標(biāo)影響了它們的預(yù)測(cè)值和整合到 reference cell atlases的普適性优构。本結(jié)果為研究人員和聯(lián)合項(xiàng)目(如人類細(xì)胞圖譜Human Cell Atlas)提供了指導(dǎo)守則。

Abstract

Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear.
In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas.

Fig. 1: Overview of the experimental design and data processing.

測(cè)試樣品是一個(gè)包含人雁竞、鼠钦椭、狗細(xì)胞的混合細(xì)胞樣品拧额,用于測(cè)試13種單細(xì)胞測(cè)序方案。獲得的reads分別mapping到人彪腔、鼠侥锦、犬的參考序列上,分別計(jì)算不同物種的不同測(cè)序方法的基因表達(dá)量德挣。
The reference sample consists of human PBMCs (60%), and HEK293T (6%), mouse colon (30%), NIH3T3 (3%) and dog MDCK cells (1%). The sample was prepared in one single batch, cryopreserved and sequenced by 13 different sc/snRNA-seq methods. Sequences were uniformly mapped to a joint human, mouse and canine reference, and then separately to produce gene expression counts for each sequencing method.


Fig. 2: Comparison of 13 sc/snRNA-seq methods.

a, Color legend of sc/snRNA-seq protocols.
b, 人細(xì)胞UMAP of 30,807 cells from the human reference sample (Chromium) colored by cell-type annotation.
c, 鼠細(xì)胞UMAP of 19,749 cells from the mouse reference (Chromium) colored by cell-type annotation.
d, Boxplots displaying the minimum, the first, second and third quantiles, and the maximum number of genes detected across the protocols, in down-sampled (20,000) HEK293T cells, monocytes and B cells. Cell identities were defined by combining the clustering of each dataset and cell projection on to the reference.
e, Number of detected genes at stepwise. down-sampled, sequencing depths. Points represent the average number of detected genes as a fraction of all cells of the corresponding cell type at the corresponding sequencing depth.
f, Dropout probabilities as a function of expression magnitude, for each protocol and cell type, calculated on down-sampled data (20,000) for 50 randomly selected cells.



Fig. 3: Similarity measures of sc/snRNA-seq methods.

a,b, Principal component analysis on down-sampled data (20,000) using highly variable genes between protocols, separated into HEK293T cells, monocytes and B cells, and color coded by protocol (a) and number of detected genes per cell (b).
c, Pearson’s correlation plots across protocols using expression of common genes. For a fair comparison, cells were down-sampled to the same number for each method (B cells, n?=?32; monocytes, n?=?57; HEK293T cells, n?=?55). Protocols are ordered by agglomerative hierarchical clustering.
d, Average log(expression) values of cell-type-specific reference markers for down-sampled (20,000) HEK293T cells, monocytes and B cells.
e, Log(expression) values of reference markers on down-sampled data (20,000) for HEK293T cells, monocytes and B cells (maximum of 50 random cells per technique).
f, Cumulative gene counts per protocol as the average of 100 randomly sampled HEK293T cells, monocytes and B cells, separately on down-sampled data (20,000).


Fig. 4: Clustering analysis of 13 sc/snRNA-seq methods on down-sampled datasets (20,000).

a, The tSNE visualizations of unsupervised clustering in human samples from 13 different methods. Each dataset was analyzed separately after down-sampling to 20,000?reads?per cell. Cells are colored by cell type inferred by matchSCore2 before down-sampling. Cells that did not achieve a probability score of 0.5 for any cell type were considered unclassified.
b, Clustering accuracy and ASW for clusters in each protocol.


Fig. 5: Integration of sc/snRNA-seq methods.

a–d, UMAP visualization of cells after integrating technologies for 18,034 human (a,b) and 7,902 mouse (c,d) cells. Cells are colored by cell type (a,c) and sc/snRNA-seq protocol (b,d).
e,f, Barplots showing normalized and method-corrected (integrated) expression scores of cell-type-specific signatures for human HEK293T cells, monocytes, B cells (e), and mouse secretory and TA cells (f). Bars represent cells and colors methods.
g,h, Evaluation of method integratability in human (g) and mouse (h) cells. Protocols are compared according to their ability to group cell types into clusters (after integration) and mix with other technologies within the same clusters. Points are colored by sequencing method.

Fig. 6: Benchmarking summary of 13 sc/snRNA-seq methods.

Methods are scored by key analytical metrics, characterizing protocols according to their ability to recapitulate the original structure of complex tissues, and their suitability for cell atlas projects. The methods are ordered by their overall benchmarking score, which is computed by averaging the scores across metrics assessed from the human datasets.

參考文獻(xiàn):

Benchmarking single-cell RNA-sequencing protocols for cell atlas projects

Elisabetta Mereu, Atefeh Lafzi Holger Heyn*
Nature Biotechnology volume 38, pages747–755(2020)Cite this article

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末恭垦,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子格嗅,更是在濱河造成了極大的恐慌番挺,老刑警劉巖,帶你破解...
    沈念sama閱讀 206,013評(píng)論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件屯掖,死亡現(xiàn)場(chǎng)離奇詭異玄柏,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)贴铜,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,205評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門粪摘,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人阀湿,你說(shuō)我怎么就攤上這事赶熟。” “怎么了陷嘴?”我有些...
    開封第一講書人閱讀 152,370評(píng)論 0 342
  • 文/不壞的土叔 我叫張陵映砖,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我灾挨,道長(zhǎng)邑退,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 55,168評(píng)論 1 278
  • 正文 為了忘掉前任劳澄,我火速辦了婚禮地技,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘秒拔。我一直安慰自己莫矗,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,153評(píng)論 5 371
  • 文/花漫 我一把揭開白布砂缩。 她就那樣靜靜地躺著作谚,像睡著了一般。 火紅的嫁衣襯著肌膚如雪庵芭。 梳的紋絲不亂的頭發(fā)上妹懒,一...
    開封第一講書人閱讀 48,954評(píng)論 1 283
  • 那天,我揣著相機(jī)與錄音双吆,去河邊找鬼眨唬。 笑死会前,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的匾竿。 我是一名探鬼主播瓦宜,決...
    沈念sama閱讀 38,271評(píng)論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼搂橙!你這毒婦竟也來(lái)了歉提?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 36,916評(píng)論 0 259
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤区转,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后版扩,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體废离,經(jīng)...
    沈念sama閱讀 43,382評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,877評(píng)論 2 323
  • 正文 我和宋清朗相戀三年礁芦,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了蜻韭。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 37,989評(píng)論 1 333
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡柿扣,死狀恐怖肖方,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情未状,我是刑警寧澤俯画,帶...
    沈念sama閱讀 33,624評(píng)論 4 322
  • 正文 年R本政府宣布,位于F島的核電站司草,受9級(jí)特大地震影響艰垂,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜埋虹,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,209評(píng)論 3 307
  • 文/蒙蒙 一猜憎、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧搔课,春花似錦胰柑、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,199評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至急灭,卻和暖如春姐浮,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背葬馋。 一陣腳步聲響...
    開封第一講書人閱讀 31,418評(píng)論 1 260
  • 我被黑心中介騙來(lái)泰國(guó)打工卖鲤, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留肾扰,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 45,401評(píng)論 2 352
  • 正文 我出身青樓蛋逾,卻偏偏與公主長(zhǎng)得像集晚,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子区匣,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,700評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容