10X單細(xì)胞(10X空間轉(zhuǎn)錄組)之NMF的實(shí)際運(yùn)用示例(探索腫瘤特征)

今天我們繼續(xù)深入分析NMF青瀑,看看NMF到底能帶給我們什么。參考文獻(xiàn)是Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer,發(fā)表于cell冰寻,頂級(jí)期刊蛇券,這里我們只關(guān)心NMF分析的部分缔恳。當(dāng)然,文章的其他部分也很重要病袄,我們后續(xù)分享搂赋。

首先來看作者進(jìn)行NMF分析的目的。

Intra-tumoral Expression Heterogeneity of the Malignant Compartment陪拘。(研究腫瘤細(xì)胞的異質(zhì)性)厂镇。

We next explored how expression states varied among different malignant cells within the same tumor, focusing on ten tumors from which the largest numbers of malignant cell transcriptomes were acquired.(不同病人相同腫瘤)。We used non-negative matrix factorization to uncover coherent sets of genes that were preferentially co-expressed by subsets of malignant cells(這個(gè)地方就采用了NMF的方法左刽,來識(shí)別惡性細(xì)胞亞群優(yōu)先共表達(dá)的相關(guān)基因集捺信,類似于WGCNA,但是原理目的都不一樣欠痴,注意區(qū)分 )迄靠。For example, we defined six gene signatures that vary among malignant cells of MEEI25(例子,在癌變細(xì)胞亞群中NMF找到的特異基因模塊)喇辽。
圖片.png
Applying the approach to each of the ten tumors defined a total of 60 gene signatures that coherently vary across individual cells in at least one tumor掌挚。Next, we used hierarchical clustering to distill these 60 signatures into meta-signatures that reflect common expression programs that vary within multiple tumors(識(shí)別的基因模塊進(jìn)行層次聚類)。
圖片.png
The high concordance between signatures from different tumors suggests that they reflect common patterns of intra-tumoral expression heterogeneity.(這是聚類的意義)菩咨。
接下來就是對(duì)識(shí)別到的模塊基因的特征進(jìn)行分析了吠式,Seven expression programs were preferentially expressed by subsets of malignant cells in at least two tumors.來看NMF的主要作用就是用來識(shí)別腫瘤內(nèi)部不同亞群之間的特異基因模塊陡厘。非常重要,一定要認(rèn)真學(xué)習(xí)并學(xué)以致用特占。

接下來我們看一看具體的方法糙置。

For each of the 10 tumors, non-negative matrix factorization (as implemented by the MATLAB nnmf function, with the number of factors set to 10(注意這里的因子數(shù),跟樣本一致是目,這個(gè)地方需要格外注意谤饭,視情況可以進(jìn)行人為的劃分)) was used to identify variable expression programs。NNMF was applied to the relative expression values (Er), by transforming all negative values to zero.(這個(gè)地方大家要對(duì)比NMF和我們常用的PCA的區(qū)別)懊纳。Notably, undetected genes include many drop-out events (genes that are expressed but are not detected in particular cells due to the incomplete transcriptome coverage), which introduce challenges for normalization of single-cell RNA-seq; since NNMF avoids the exact normalized values of undetected genes (as they are all zero), it may be beneficial in analysis of single-cell RNA-seq (data not shown).(這個(gè)地方也是非常重要的揉抵,NMF相對(duì)于PCA的優(yōu)勢)。We retained only programs for which the standard deviation in cell scores within the respective tumor was larger than 0.8, which resulted in a total of 60 programs across the 10 tumors.(特征的提取也是一門學(xué)問)嗤疯。The 60 programs were compared by hierarchical clustering (data not shown), using one minus the Pearson correlation coefficient over all gene scores as a distance metric.(如上圖)冤今,Six clusters of programs were identified manually and used to define meta-signatures. For each cluster, NNMF gene scores were log2-transformed and then averaged across the programs in the cluster, and genes were ranked by their average scores。The top 30 genes for each cluster were defined as the meta signature that was used to define cell scores(這個(gè)地方是精髓茂缚,有的文章是提取前50個(gè)基因)辟汰。each of those genes had average scores above 1 and a t test p value below 0.05, based ontheir scores across the individual programs in the cluster. Since the number of programs in a cluster was small this analysis was not powered to correct for multiple testing and thus we refer to an uncorrected p value and selected the top ranked genes。However, while confidence is difficult to establish for individual genes in each meta-program, each gene-set defined as a meta-program is highly significant in its co-variation in tumors. For each of the meta-programs, and within each of the tumors included in those meta-programs (2-8 tumors for each meta-program), the average Pearson correlation between all pairs of genes included in the gene-set (calculated across single malignant cells from the respective tumor) was higher than that obtained for 10,000 control gene-sets, which were selected to reproduce the overall distribution of expression levels of the meta-program genes(分?jǐn)?shù)的求解過程我們下一篇詳細(xì)分享)阱佛。
To show the robustness of the NNMF-derived programs with regards to the number of NNMF factors, we repeated the NNMF analysis with the number of factors between 5 and 15(這個(gè)迭代過程也很重要)。Each of the seven meta-signatures was robustly identified with each of the NNMF parameters.
想深入學(xué)習(xí)生物信息的同學(xué)戴而,基礎(chǔ)的數(shù)學(xué)知識(shí)還是要掌握一些的凑术。

生活很好,等你超越

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
禁止轉(zhuǎn)載所意,如需轉(zhuǎn)載請(qǐng)通過簡信或評(píng)論聯(lián)系作者淮逊。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市扶踊,隨后出現(xiàn)的幾起案子泄鹏,更是在濱河造成了極大的恐慌,老刑警劉巖秧耗,帶你破解...
    沈念sama閱讀 206,013評(píng)論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件备籽,死亡現(xiàn)場離奇詭異,居然都是意外死亡分井,警方通過查閱死者的電腦和手機(jī)车猬,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,205評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來尺锚,“玉大人珠闰,你說我怎么就攤上這事√北纾” “怎么了伏嗜?”我有些...
    開封第一講書人閱讀 152,370評(píng)論 0 342
  • 文/不壞的土叔 我叫張陵坛悉,是天一觀的道長。 經(jīng)常有香客問我承绸,道長裸影,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 55,168評(píng)論 1 278
  • 正文 為了忘掉前任八酒,我火速辦了婚禮空民,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘羞迷。我一直安慰自己界轩,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,153評(píng)論 5 371
  • 文/花漫 我一把揭開白布衔瓮。 她就那樣靜靜地躺著浊猾,像睡著了一般。 火紅的嫁衣襯著肌膚如雪热鞍。 梳的紋絲不亂的頭發(fā)上葫慎,一...
    開封第一講書人閱讀 48,954評(píng)論 1 283
  • 那天,我揣著相機(jī)與錄音薇宠,去河邊找鬼偷办。 笑死,一個(gè)胖子當(dāng)著我的面吹牛澄港,可吹牛的內(nèi)容都是我干的椒涯。 我是一名探鬼主播,決...
    沈念sama閱讀 38,271評(píng)論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼回梧,長吁一口氣:“原來是場噩夢啊……” “哼废岂!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起狱意,我...
    開封第一講書人閱讀 36,916評(píng)論 0 259
  • 序言:老撾萬榮一對(duì)情侶失蹤湖苞,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后详囤,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體财骨,經(jīng)...
    沈念sama閱讀 43,382評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,877評(píng)論 2 323
  • 正文 我和宋清朗相戀三年藏姐,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了蚓再。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 37,989評(píng)論 1 333
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡包各,死狀恐怖摘仅,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情问畅,我是刑警寧澤娃属,帶...
    沈念sama閱讀 33,624評(píng)論 4 322
  • 正文 年R本政府宣布六荒,位于F島的核電站,受9級(jí)特大地震影響矾端,放射性物質(zhì)發(fā)生泄漏掏击。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,209評(píng)論 3 307
  • 文/蒙蒙 一秩铆、第九天 我趴在偏房一處隱蔽的房頂上張望砚亭。 院中可真熱鬧,春花似錦殴玛、人聲如沸捅膘。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,199評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽寻仗。三九已至,卻和暖如春凡壤,著一層夾襖步出監(jiān)牢的瞬間署尤,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 31,418評(píng)論 1 260
  • 我被黑心中介騙來泰國打工亚侠, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留曹体,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 45,401評(píng)論 2 352
  • 正文 我出身青樓硝烂,卻偏偏與公主長得像混坞,于是被迫代替她去往敵國和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子钢坦,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,700評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容