about
近期在做一個Object Detective的項目,這里用的是Caffe,如果同學你還沒裝上Caffe的話艺配,可以參考我之前寫的文章:
Ubuntu 14.04LTS + Caffe+ CUDA8.0 + OpenCV 3.1.0 + cuDNN 8.0
在Caffe搭好了之后搭儒,再來看這篇钠龙。
Installation
clone fast-rcnn
這里,我們先下載Ross Girshick大神在Github上的一個庫。
# Make sure to clone with --recursive
$ git clone --recursive https://github.com/rbgirshick/fast-rcnn.git
如大神所言,記得加上--recursive
Build the Cython modules
從下文開始狂票,我將用$FRCN_ROOT來代表上面git clone下來的文件目錄路徑。如直接放在home下熙暴,$FAST_ROOT被替換為/home/cap/fast-rcnn(注意闺属,此處的cap是我的用戶名,應該換成你自己的)
$ cd $FRCN_ROOT/lib
$ make
Build Caffe and pycaffe
在編譯之前周霉,先來做下準備工作掂器。
把$FRCN_ROOT/caffe-fast-rcnn目錄下的Makefile.config.example文件復制一份,重命名為Makefile.config诗眨。
修改Makefile.config的相關項
...
USE_CUDNN = 1 //此項默認是關閉的,若你安裝了cudnn孕讳,則把前面的#去掉匠楚,讓其支持cudnn.
WITH_PYTHON_LAYER = 1 //這項默認也是關閉的,應該打開厂财,去掉前面的#
USE_PKG_CONFIG = 1 //此項默認也是關閉的芋簿,應該打開,去掉前面的#
# CPU_ONLY := 1 //此項默認是關閉的璃饱,如果你的機器不支持gpu計算与斤,則將其打開,去掉前面的注釋
CUDA_DIR := /usr/local/cuda //注意此項,應該和你安裝的cuda的路徑相同
在完成了前面的工作后撩穿,開始編譯pycaffe磷支。
$ cd $FRCN_ROOT/caffe-fast-rcnn
$ make -j8 && make pycaffe
- 編譯pycaffe時,我的機器報錯了
AR -o .build_release/lib/libcaffe.a
LD -o .build_release/lib/libcaffe.so
/usr/bin/ld: cannot find -lippicv
collect2: error: ld returned 1 exit status
make: *** [.build_release/lib/libcaffe.so] Error 1
- 解決方法:
把OpenCV下的libippicv.a文件復制到/usr/local/lib目錄下食寡,然后重新編譯pycaffe雾狈。具體操作如下:
復制libippicv.a文件
$ cd /usr/local/opencv-3.1.0/3rdparty/ippicv/unpack/ippicv_lnx/lib/intel64
$ sudo cp libippicv.a /usr/local/lib
然后重新編譯pycaffe
$ cd $FRCN_ROOT/caffe-fast-rcnn
$ make clean #清除前面的
$ make -j8 && make pycaffe
Download pre-computed Fast R-CNN detectors
此處是下載一些訓練模型,在這篇博客里抵皱,我們先用作者已經(jīng)訓練好的caffe模型善榛,看下fast-rcnn的效果:
$ cd $FRCN_ROOT
$ ./data/scripts/fetch_fast_rcnn_models.sh
下載完后,在$FRCN_ROOT/data/fast_rcnn_models下有三個模型呻畸,分別為
.
├── caffenet_fast_rcnn_iter_40000.caffemodel
├── vgg16_fast_rcnn_iter_40000.caffemodel
└── vgg_cnn_m_1024_fast_rcnn_iter_40000.caffemodel
在$FRCN_ROOT/data/scripts下移盆,有三個shell(即.sh)文件
.
├── fetch_fast_rcnn_models.sh
├── fetch_imagenet_models.sh
└── fetch_selective_search_data.sh
此處引用樓燚航同學的介紹:
第一是作者訓練好的fast_rcnn模型,第二個是imagenet_model上預訓練好的模型伤为,第三個對應著的是作者基于Pascal VOC數(shù)據(jù)集提取的selective_search預選框咒循。如果想要看一下fast rcnn的效果,可以直接加載Ross訓練好的fast_rcnn模型钮呀,如果要自己訓練的話剑鞍,記得加載imagenet模型
run the demo
在開始前,你可能需要先安裝相關的Python module
$ sudo pip2 install easydict
開始跑動demo
cd $FRCN_ROOT
./tools/demo.py
運行結果:
結果跑出了3張圖爽醋,這里貼出其中一張結果的效果圖(很棒喲蚁署,兄弟)
如果你的gpu性能不加,顯存小于3G蚂四,那么可能出現(xiàn)類似如下的錯誤
Loaded network /home/hadoop/fast-rcnn/data/fast_rcnn_models/vgg16_fast_rcnn_iter_40000.caffemodel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000004.jpg
F0314 16:28:23.588573 5987 syncedmem.cpp:51] Check failed: error == cudaSuccess (2 vs. 0) out of memory
*** Check failure stack trace: ***
Aborted (core dumped)
- 解決辦法:
使用較小的網(wǎng)絡模型
$ cd $FRCN_ROOT
$ ./tools/demo.py --net caffenet
- 如果是你的機器不支持GPU光戈,那么記得在前面的Makefile.config文件去掉 # CPU_ONLY := 1 前面的#,使用CPU計算遂赠,然后此處跑動demo時久妆,敲入
$ cd $FRCN_ROOT
$ ./tools/demo.py --cpu
- 想了解更多的操作,敲入
$ cd $FRCN_ROOT
$ ./tools/demo.py -h
usage: demo.py [-h] [--gpu GPU_ID] [--cpu]
[--net {vgg16,caffenet,vgg_cnn_m_1024}]
Train a Fast R-CNN network
optional arguments:
-h, --help show this help message and exit
--gpu GPU_ID GPU device id to use [0]
--cpu Use CPU mode (overrides --gpu)
--net {vgg16,caffenet,vgg_cnn_m_1024}
Network to use [vgg16]
參考
Ross Girshick大神在Github上的搭建說明
dengshuai_super同學的/usr/bin/ld: 找不到 -lippicv(ubuntu 16.04 LTS 安裝opencv-3.1.0,含完整安裝步驟)中的解決方案三