主要使用Tensorflow深度學(xué)習(xí)框架和卷積神經(jīng)網(wǎng)絡(luò)(CNN)算法實(shí)現(xiàn)對(duì)驗(yàn)證碼識(shí)別的功能里烦。
步驟
1.captcha庫(kù)生成驗(yàn)證碼纺座。
2.構(gòu)造網(wǎng)絡(luò)的輸入數(shù)據(jù)和標(biāo)簽碌秸。
2.基于TensorFlow框架和卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練自己的驗(yàn)證碼識(shí)別模型
生成驗(yàn)證碼
使用 Python 的 captcha 庫(kù)來生成即可撤卢,這個(gè)庫(kù)默認(rèn)是沒有安裝的,所以需要先安裝這個(gè)庫(kù)集嵌,使用 pip3 安裝即可
代碼如下:
import numpy as np
import tensorflow as tf
from captcha.image import ImageCaptcha#驗(yàn)證碼生成框架
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image#圖片處理標(biāo)準(zhǔn)庫(kù)
import random
number = ['0','1','2','3','4','5','6','7','8','9']
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']
def random_captcha_text(char_set=number+alphabet+ALPHABET ,captcha_size=4):
captcha_text=[]#list
for i in range(captcha_size ):
c=random.choice(char_set)
captcha_text .append(c)
return captcha_text
def gen_captcha_text_and_image():
image=ImageCaptcha()
captcha_text=random_captcha_text()
captcha_text="".join(captcha_text )#把list中的所有元素放入一個(gè)字符串
captcha=image.generate(captcha_text )
captcha_image=Image.open(captcha)
captcha_image=np.array(captcha_image)#將圖片保存為矩陣
return captcha_text,captcha_image
if __name__ == '__main__':
text, image = gen_captcha_text_and_image()
f = plt.figure()
ax = f.add_subplot(111)
ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes)
plt.imshow(image)
plt.show()
結(jié)果如下:
構(gòu)造網(wǎng)絡(luò)的輸入數(shù)據(jù)和標(biāo)簽
這里將這個(gè)問題看做是分類問題缕粹,驗(yàn)證碼中一共有四個(gè)數(shù)字(或者字母),則共有(10+26+26)4=624 種可能的情況纸淮。這里為了方便進(jìn)行驗(yàn)證,僅僅構(gòu)造了數(shù)字的驗(yàn)證碼亚享,則每個(gè)數(shù)字有10種可能性咽块,共有10*4中可能的情況。
涉及到的主要代碼為:
def convert2gray(img):#將圖像轉(zhuǎn)化為灰度圖
if len(img.shape) > 2:
gray = np.mean(img, -1)
# 上面的轉(zhuǎn)法較快欺税,正規(guī)轉(zhuǎn)法如下
# r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
# gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
else:
return img
#下面的 text2vec() 方法就是將真實(shí)文本轉(zhuǎn)化為 One-Hot 編碼侈沪,vec2text() 方法就是將 One-Hot 編碼轉(zhuǎn)回真實(shí)文本
def text2vec(text):
text_len = len(text)
if text_len > MAX_CAPTCHA:
raise ValueError('驗(yàn)證碼最長(zhǎng)4個(gè)字符')
vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
for i, c in enumerate(text):
idx = i * CHAR_SET_LEN + int(c)
vector[idx] = 1
return vector
# 向量轉(zhuǎn)回文本
def vec2text(vec):
text = []
char_pos = vec.nonzero()[0]#nonzero(a)返回?cái)?shù)組a中值不為零的元素的下標(biāo)
for i, c in enumerate(char_pos):
number = i % 10
text.append(str(number))
return "".join(text)
構(gòu)造CNN模型
這里僅僅構(gòu)造了三層卷積,每層卷積后跟池化層晚凿,一個(gè)全連接層+一個(gè)結(jié)果輸出層亭罪。
# 定義CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])#為了滿足TensorFlow的要求
# w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
# w_c2_alpha = np.sqrt(2.0/(3*3*32))
# w_c3_alpha = np.sqrt(2.0/(3*3*64))
# w_d1_alpha = np.sqrt(2.0/(8*32*64))
# out_alpha = np.sqrt(2.0/1024)
# 3 conv layer
#3個(gè)卷積+池化
w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv1 = tf.nn.dropout(conv1, keep_prob)
w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.dropout(conv2, keep_prob)
w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv3 = tf.nn.dropout(conv3, keep_prob)
# Fully connected layer
w_d = tf.Variable(w_alpha * tf.random_normal([8 * 20 * 64, 1024]))
b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
dense = tf.nn.dropout(dense, keep_prob)
w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
out = tf.add(tf.matmul(dense, w_out), b_out)
return out
補(bǔ)充padding='SAME'和padding='VALID'的區(qū)別。
tensorflow 中的padding方式有“SAME”和“VALID”
這兩個(gè)方式計(jì)算特征圖的輸出大小方式不一樣歼秽。
- valid: 周圍不填0進(jìn)行卷積運(yùn)算应役,無法計(jì)算的部分(矩陣的右邊和下面)直接舍去。
如果padding的方法為“VALID” ,那么輸出特征圖的長(zhǎng)和寬為:
new_width=new_height=? W-F+1 / S? - same: 周圍填0進(jìn)行卷積運(yùn)算箩祥,0在矩陣的左右和上下均勻添加院崇,非均勻時(shí)多的加在右邊和下面。
如果padding的方法為“SAME” 袍祖,那么輸出特征圖的長(zhǎng)和寬為:
new_width=new_height=? W / S?
W為輸入的size底瓣,F(xiàn)為filter為size,S為步長(zhǎng)蕉陋,? ?為向上取整符號(hào)
定義一次訓(xùn)練的batch捐凭,定義損失函數(shù),訓(xùn)練優(yōu)化模型
# 生成一個(gè)訓(xùn)練batch
def get_next_batch(batch_size=128):
batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])
# 有時(shí)生成圖像大小不是(60, 160, 3)
def wrap_gen_captcha_text_and_image():
while True:
text, image = gen_captcha_text_and_image()
if image.shape == (60, 160, 3):
return text, image
for i in range(batch_size):
text, image = wrap_gen_captcha_text_and_image()
image = convert2gray(image)
batch_x[i, :] = image.flatten() / 255 # (image.flatten()-128)/128 mean為0凳鬓。即值為從0到1之間
batch_y[i, :] = text2vec(text)
return batch_x, batch_y
#定義損失函數(shù)茁肠,進(jìn)行模型迭代優(yōu)化
def train_crack_captcha_cnn():
output = crack_captcha_cnn()
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
max_idx_p = tf.argmax(predict, 2)
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 0
while True:
batch_x, batch_y = get_next_batch(64)#數(shù)據(jù)需要一個(gè)batch一個(gè)batch進(jìn)行傳入
_, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
#print(step, loss_)
# 每10 step計(jì)算一次準(zhǔn)確率
if step % 10 == 0:
batch_x_test, batch_y_test = get_next_batch(100)
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
print("Step: ",step,"準(zhǔn)確率:" ,acc)
# 如果準(zhǔn)確率大于50%,保存模型,完成訓(xùn)練
if acc > 0.60:
saver.save(sess, "./model/crack_capcha.model", global_step=step)
break
step += 1