目錄
- 相關(guān)概念介紹
- 實現(xiàn)原理介紹
- 源碼分析
- 總結(jié)
- 參考地址
相關(guān)概念介紹
- 數(shù)組
采用一段連續(xù)的存儲單元來存儲數(shù)據(jù)抗果。 - 線性鏈表
具有鏈接存儲結(jié)構(gòu)的線性表兽埃,它用一組地址任意的存儲單元存放線性表中的數(shù)據(jù)元素捂襟,邏輯上相鄰的元素在物理上不要求也相鄰挺尿,不能隨機存取聋庵。一般用結(jié)點描述:結(jié)點(表示數(shù)據(jù)元素) =數(shù)據(jù)域(數(shù)據(jù)元素的映象) + 指針域(指示后繼元素存儲位置) - 紅黑樹
紅黑樹(Red Black Tree) 是一種自平衡二叉查找樹,在進行插入和刪除操作時通過特定操作保持二叉查找樹的平衡,從而獲得較高的查找性能腊凶。相關(guān)介紹參考紅黑樹原理和算法 - 哈希表
是根據(jù)關(guān)鍵碼值(Key value)而直接進行訪問的數(shù)據(jù)結(jié)構(gòu)划咐。也就是說,它通過把關(guān)鍵碼值映射到表中一個位置來訪問記錄钧萍,以加快查找的速度褐缠。這個映射函數(shù)叫做散列函數(shù),存放記錄的數(shù)組叫做散列表风瘦。
給定表M队魏,存在函數(shù)f(key),對任意給定的關(guān)鍵字值key万搔,代入函數(shù)后若能得到包含該關(guān)鍵字的記錄在表中的地址胡桨,則稱表M為哈希(Hash)表俐载,函數(shù)f(key)為哈希(Hash) 函數(shù)。 - 哈希沖突
如果兩個不同的元素登失,通過哈希函數(shù)得出的實際存儲地址,然后要進行插入的時候挖炬,發(fā)現(xiàn)已經(jīng)被其他元素占用了揽浙,這就是所謂的哈希沖突擦酌,也叫哈希碰撞支竹。
實現(xiàn)原理介紹
簡單來說,HashMap由數(shù)組+鏈表組成的格粪,數(shù)組是HashMap的主體草姻,鏈表則是主要為了解決哈希沖突而存在的钓猬,如果定位到的數(shù)組位置不含鏈表(當(dāng)前node的next指向null),那么對于查找,添加等操作很快撩独,僅需一次尋址即可敞曹;如果定位到的數(shù)組包含鏈表,對于添加操作综膀,其時間復(fù)雜度為O(n)澳迫,首先遍歷鏈表,存在即覆蓋剧劝,否則新增橄登;對于查找操作來講,仍需遍歷鏈表讥此,然后通過key對象的equals方法逐一比對查找拢锹。所以,性能考慮萄喳,HashMap中的鏈表出現(xiàn)越少卒稳,性能才會越好。
源碼分析
以下所有代碼基于jdk1.8
- 成員變量
//默認初始化容器大小 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//默認容器最大值 2^30
static final int MAXIMUM_CAPACITY = 1 << 30;
//默認的負載因子,當(dāng)容器元素數(shù)量達到總?cè)萘?DEFAULT_LOAD_FACTOR時會進行擴容操作
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//默認樹形閾值
static final int TREEIFY_THRESHOLD = 8;
//默認非樹形閾值
static final int UNTREEIFY_THRESHOLD = 6;
//默認紅黑樹最小容量
static final int MIN_TREEIFY_CAPACITY = 64;
//數(shù)組
transient Node<K,V>[] table;
//使用Set存儲所有的節(jié)點
transient Set<Map.Entry<K,V>> entrySet;
//map的大小
transient int size;
//hashMap修改的次數(shù)
transient int modCount;
//下一次擴容的閾值
int threshold;
//hash表的負載因子
final float loadFactor;
- 節(jié)點
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
- #put()操作
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
static final int hash(Object key) {
int h;
//h>>>16 無符號右移16位,hash的效果等于將key的hashCode的高16位^低16位運算
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//1.如果容器還未初始化,進行resize操作
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//2.n是2的倍數(shù)所以(以n=16為例)n-1為1111,(n-1)&hash就是取hash的低四位,即保證坐標值一定是在數(shù)組范圍之類
//計算出該元素應(yīng)該放入數(shù)組的下標,這里表示當(dāng)該位置為null時,新增一個節(jié)點并放入
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
//3.當(dāng)不為空時,默認采用開放尋址法尋找到key相同(或者新增)的節(jié)點
Node<K,V> e; K k;
//3.1 如果新增的key-value已經(jīng)有對應(yīng)的值了,不做操作,直接返回原值
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//3.2 如果數(shù)組中的節(jié)點是樹形節(jié)點,進行紅黑樹的插入操作
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//3.2 如果數(shù)組中的節(jié)點是線性鏈表,遍歷節(jié)點,如果有相同的就break,否則將節(jié)點加入到末尾取胎。
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//如果鏈表長度超過了樹形閾值,則將鏈表轉(zhuǎn)換成紅黑樹
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//4. 如果e不為空展哭,說明找到相同key,替換新的value并返回舊的value
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
//自定義擴展方法闻蛀,LinkedHashMap中有實現(xiàn)
afterNodeAccess(e);
return oldValue;
}
}
//5. 修改次數(shù)自增,容器大小自增,并且如果超過了閾值,進行resize操作
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
主要流程如下:
- 判斷HashMap是否初始化匪傍,如果還沒有初始化,先初始化觉痛;
- 通過hash&(n-1)算出在桶上的位置役衡,如果對應(yīng)位置為空,直接放入該位置中薪棒;
- 如果桶上的對應(yīng)的位置不為空手蝎,則進入對應(yīng)的鏈表進行下一步判斷:
- 根據(jù)hash或者key來判斷是否相同榕莺,相同時e=p;
- 如果p是紅黑樹棵介,則進入紅黑樹的插入邏輯钉鸯,并返回e;
- 遍歷p鏈表邮辽,根據(jù)hash或者key來判斷是否存在相同唠雕,如果存在直接返回e,否則創(chuàng)建新的節(jié)點吨述;
- 根據(jù)上面返回的e節(jié)點來判斷岩睁,如果不為空,說明在HashMap中找到對應(yīng)的節(jié)點揣云,替換新的value值并返回舊值捕儒,結(jié)束put操作;
- 修改容器大小邓夕,并判斷是否超過閾值刘莹,如果超過進行擴容操作。
- #resize()操作
final Node<K,V>[] resize() {
//1. 數(shù)據(jù)備份,數(shù)組,容量大小,擴容閾值
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
//2. 如果超過默認最大值,直接返回,否則變更大小(原大小*2)
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//3. 如果原擴容閾值>0,新的容量=原擴容閾值,否則使用默認值
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//4. 根據(jù)負載因子計算新的擴容閾值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
//5. 根據(jù)新的容量創(chuàng)建新的tab
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//6. 進行擴容操作
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
//5.1 對于單個節(jié)點,重新計算位置并放入
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//5.2 樹形節(jié)點單獨處理
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//5.3 鏈表節(jié)點單獨處理
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
//將鏈表的數(shù)據(jù)分成兩波
//oldCap是舊桶的長度翎迁,是2的倍數(shù)栋猖,比如oldCap為16->10000
//e.hash&oldCap==0說明e.hash高位為0
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//(e.hash & oldCap) == 0)的即hash值高位為0的還是原來的位置
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//(e.hash & oldCap) != 0)的即hash值高位不為0的放入oldCap+j的位置
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
主要流程如下:
先進行數(shù)組,容量大小,擴容閾值等的備份;
擴容時如果是單節(jié)點汪榔,重新計算桶的位置蒲拉,新的桶位置根據(jù)hash值來,可能還在原來的位置痴腌,也可能翻倍增長雌团,如下圖中15->31;
如果是紅黑樹節(jié)點,單獨處理士聪;
-
如果是鏈表結(jié)構(gòu)锦援,將鏈表分為兩部分,一部分hash高位為0還保持原來的位置剥悟,另一部分放到數(shù)組原來位置+oldCap的位置上灵寺。如圖所示:
鏈表擴容示意圖 與1.7版本的比較
1.7中沒有紅黑樹,所以代碼也比較簡單一點
public V put(K key, V value) {
//如果數(shù)組為空,擴容
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
if (key == null)
return putForNullKey(value);
int hash = hash(key);
int i = indexFor(hash, table.length);
//根據(jù)找出的索引位置去判斷該位置上鏈表有沒有相同的entry
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
//增加entry
addEntry(hash, key, value, i);
return null;
}
void addEntry(int hash, K key, V value, int bucketIndex) {
//判斷是否進行擴容操作
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
//創(chuàng)建entry
createEntry(hash, key, value, bucketIndex);
}
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry[] newTable = new Entry[newCapacity];
//重點在這
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
//多線程下會形成閉環(huán)
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
這里的擴容多線程情況下會出現(xiàn)閉環(huán)現(xiàn)象,下面通過幾張圖來解釋閉環(huán)的形成:
我們假設(shè) HashMap 從 2 resize到 4 :
假設(shè)我們有兩個線程t1区岗,t2略板,假設(shè)t1Entry<K,V> next = e.next;處掛起,t2完成了后面的操作慈缔,在按照上面的代碼執(zhí)行后:
這個時候t1又恢復(fù)了調(diào)度叮称,接著往下執(zhí)行:
接著往下執(zhí)行:
閉環(huán)形成:
- #get()操作
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//優(yōu)先檢查第一個節(jié)點
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
//如果是紅黑樹,進行紅黑樹操作
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
- #remove()操作
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
//找出需要remove的節(jié)點,跟get操作基本一致
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
//remove對應(yīng)的節(jié)點
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
//紅黑樹對應(yīng)操作
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
//鏈表的對應(yīng)操作
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
- 紅黑樹的實現(xiàn)
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
//返回根節(jié)點
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}
/**
* 由于TreeNode即是樹結(jié)構(gòu)也是雙向鏈表.所以這里
* 保證樹的根節(jié)點同時也是鏈表的首節(jié)點
*/
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
int n;
if (root != null && tab != null && (n = tab.length) > 0) {
int index = (n - 1) & root.hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
if (root != first) {
Node<K,V> rn;
tab[index] = root;
TreeNode<K,V> rp = root.prev;
if ((rn = root.next) != null)
((TreeNode<K,V>)rn).prev = rp;
if (rp != null)
rp.next = rn;
if (first != null)
first.prev = root;
root.next = first;
root.prev = null;
}
assert checkInvariants(root);
}
}
//尋找節(jié)點
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
TreeNode<K,V> p = this;
do {
int ph, dir; K pk;
TreeNode<K,V> pl = p.left, pr = p.right, q;
//如果當(dāng)前節(jié)點的hash大于需要尋找節(jié)點的hash瓤檐,則指向其左孩子赂韵,否則指向右孩子,如果當(dāng)前節(jié)點就是要尋找的節(jié)點挠蛉,直接返回
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.find(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
return null;
}
//獲取相應(yīng)的節(jié)點
final TreeNode<K,V> getTreeNode(int h, Object k) {
return ((parent != null) ? root() : this).find(h, k, null);
}
//插入操作
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
//獲取父節(jié)點
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
TreeNode<K,V> xp = p;
//根據(jù)hash判斷祭示,并且遍歷插入到葉子節(jié)點,再進行平衡調(diào)整
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
//刪除操作
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
boolean movable) {
int n;
if (tab == null || (n = tab.length) == 0)
return;
int index = (n - 1) & hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
//1.先刪除鏈表的關(guān)系
if (pred == null)
tab[index] = first = succ;
else
pred.next = succ;
if (succ != null)
succ.prev = pred;
if (first == null)
return;
//2.開始刪除樹形關(guān)系
if (root.parent != null)
root = root.root();
//如果鏈表太小,從紅黑樹轉(zhuǎn)化成普通鏈表
if (root == null || root.right == null ||
(rl = root.left) == null || rl.left == null) {
tab[index] = first.untreeify(map); // too small
return;
}
//2.1 被刪除節(jié)點左孩子與右孩子都不為空
TreeNode<K,V> p = this, pl = left, pr = right, replacement;
if (pl != null && pr != null) {
TreeNode<K,V> s = pr, sl;
//尋找刪除節(jié)點的后繼(中序遍歷)由于第一步已經(jīng)斷開本刪除節(jié)點與其后繼的鏈接谴古,所以這里使用中序遍歷找出其后繼
while ((sl = s.left) != null) // find successor
s = sl;
//交換后繼與被刪除節(jié)點的顏色
boolean c = s.red; s.red = p.red; p.red = c; // swap colors
TreeNode<K,V> sr = s.right;
TreeNode<K,V> pp = p.parent;
//如果pr就是其后繼绍移,直接交換位置
if (s == pr) { // p was s's direct parent
p.parent = s;
s.right = p;
}
else {
TreeNode<K,V> sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
root = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
//此時,被刪除的節(jié)點與其后繼位置交換完成
if (sr != null)
replacement = sr;
else
replacement = p;
}
else if (pl != null)
//2.2 左子樹不為空
replacement = pl;
else if (pr != null)
//2.3 右子樹不為空
replacement = pr;
else
//2.4 左右子樹都為空
replacement = p;
//3. 左右子樹不為空進行讥电,使用非空子樹代替p
if (replacement != p) {
TreeNode<K,V> pp = replacement.parent = p.parent;
if (pp == null)
root = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}
//4. 當(dāng)刪除節(jié)點是黑色的時候進行平衡轉(zhuǎn)化
TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
//5. 點左右子樹都為空,直接刪除p節(jié)點
if (replacement == p) { // detach
TreeNode<K,V> pp = p.parent;
p.parent = null;
if (pp != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
}
}
if (movable)
moveRootToFront(tab, r);
}
//左旋(動手畫一下就懂了)
static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> r, pp, rl;
if (p != null && (r = p.right) != null) {
if ((rl = p.right = r.left) != null)
rl.parent = p;
if ((pp = r.parent = p.parent) == null)
(root = r).red = false;
else if (pp.left == p)
pp.left = r;
else
pp.right = r;
r.left = p;
p.parent = r;
}
return root;
}
//右旋(同理,動手畫一下)
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}
//插入平衡轉(zhuǎn)化
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
//默認插入的節(jié)點為紅色
x.red = true;
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
//1.x為根節(jié)點,根節(jié)點默認為黑色,并直接返回
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (!xp.red || (xpp = xp.parent) == null)
//2.父節(jié)點為黑色,或者祖父節(jié)點為空,即父節(jié)點是根節(jié)點,此時不需要調(diào)整
return root;
//3.分類討論,xp為左節(jié)點或者右節(jié)點
if (xp == (xppl = xpp.left)) {
//3.1. 再次分類,如果x的叔父節(jié)點:xppr,不為空且為紅色節(jié)點,此時先進行部分顏色調(diào)整
if ((xppr = xpp.right) != null && xppr.red) {
//父節(jié)點,叔父節(jié)點變?yōu)楹谏?祖父變?yōu)榧t色,x變成祖父節(jié)點
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
//3.1.1. 再次分類,如果x為xp的右孩子,則對xp進行左旋
if (x == xp.right) {
root = rotateLeft(root, x = xp);
//重新對xp,xpp定義
xpp = (xp = x.parent) == null ? null : xp.parent;
}
//這里xp為原來的x為紅色,x也是紅色,所以先進行顏色調(diào)整,然后進行右旋
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
else {
//鏡像操作
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}
//刪除平衡轉(zhuǎn)化
static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
TreeNode<K,V> x) {
for (TreeNode<K,V> xp, xpl, xpr;;) {
if (x == null || x == root)
return root;
else if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (x.red) {
//1.如果x的紅色節(jié)點,修改為黑色轧抗,無需調(diào)整結(jié)構(gòu)恩敌,直接返回
x.red = false;
return root;
}
else if ((xpl = xp.left) == x) {
//2.x為左節(jié)點
if ((xpr = xp.right) != null && xpr.red) {
//如果x的叔父節(jié)點為紅色,此時左邊比右邊矮横媚,需要左旋
xpr.red = false;
xp.red = true;
root = rotateLeft(root, xp);
xpr = (xp = x.parent) == null ? null : xp.right;
}
//如果xpr為空,x指向xp
if (xpr == null)
x = xp;
else {
//如果xpr不為空纠炮,則分別對xpr的左右孩子進行分類
TreeNode<K,V> sl = xpr.left, sr = xpr.right;
if ((sr == null || !sr.red) &&
(sl == null || !sl.red)) {
//如果左孩子,右孩子滿足為空或者為黑色節(jié)點灯蝴,xpr轉(zhuǎn)為紅色恢口,x指向xp,進入下一次循環(huán)穷躁,xp會被轉(zhuǎn)成黑色耕肩,滿足紅黑樹條件
xpr.red = true;
x = xp;
}
else {
if (sr == null || !sr.red) {
//xpr左子樹不為空且為紅色
if (sl != null)
//xpr左子樹不為空,將其變成黑色
sl.red = false; //xpr變成紅色问潭,不滿足紅黑樹3猿诸,4,需要進行右旋
xpr.red = true;
root = rotateRight(root, xpr);
xpr = (xp = x.parent) == null ?
null : xp.right;
}
if (xpr != null) {
xpr.red = (xp == null) ? false : xp.red;
if ((sr = xpr.right) != null)
sr.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateLeft(root, xp);
}
x = root;
}
}
}
else { // symmetric
if (xpl != null && xpl.red) {
xpl.red = false;
xp.red = true;
root = rotateRight(root, xp);
xpl = (xp = x.parent) == null ? null : xp.left;
}
if (xpl == null)
x = xp;
else {
TreeNode<K,V> sl = xpl.left, sr = xpl.right;
if ((sl == null || !sl.red) &&
(sr == null || !sr.red)) {
xpl.red = true;
x = xp;
}
else {
if (sl == null || !sl.red) {
if (sr != null)
sr.red = false;
xpl.red = true;
root = rotateLeft(root, xpl);
xpl = (xp = x.parent) == null ?
null : xp.left;
}
if (xpl != null) {
xpl.red = (xp == null) ? false : xp.red;
if ((sl = xpl.left) != null)
sl.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateRight(root, xp);
}
x = root;
}
}
}
}
}
}
總結(jié)
參考地址
紅黑樹原理和算法
紅黑樹插入圖解
二叉樹的遍歷規(guī)則
紅黑樹化過程
推薦:并發(fā)情況下:Java HashMap 形成死循環(huán)的原因