ctDNA檢測(cè)相關(guān)的理論模型

1 cm3腫瘤釋放到血液中的ctDNA比例為0.022%

腫瘤體積與hGE線性相關(guān)

By reanalyzing ctDNA sequencing data and tumor volumes of 176 patients with stage I to III non–small cell lung cancer of three cohorts (14, 22, 23), we found that haploid genome equivalents (hGE) per plasma ml indeed correlate with tumor volume with a slope of 0.9997 [95% confidence interval (CI), 0.78 to 1.2; R2 = 0.32; red line in Fig. 1B; Materials and Methods]. We found similar linear regression slopes and intercepts in the separated three cohorts (fig. S1).

Linear regression predicted 0.21 hGE per plasma ml for 1 cm3 of tumor volume(95% CI, 0.15 to 0.28; 95% prediction interval, 0.0033 to 13 hGE per plasma ml for a fixed slope of 1; fig. S2B). In other words, approximately 0.014% of a cancer cell’s genome is shed into the bloodstream after it undergoes apoptosis.

For a ctDNA half-life time of t1/2 = 30 min (16), we calculated a ctDNA elimination rate of ≈ 33 per day.

At a primary tumor size of 1 cm3 (~1 billion cells), we find, on average, 572 ctDNA hGE circulating in the bloodstream (Fig. 1D). A 15-ml blood sample contains approximately 1.7 ctDNA hGE (Fig. 1E). At a mean plasma DNA concentration of 6.3 ng per plasma ml (Materials and Methods), 0.21 ctDNA hGE per plasma ml correspond to a tumor fraction of 0.022% (assuming 6.6 pg per diploid genome).

image.png

Factors influence ctDNA levels

In general, the tumor growth dynamics, the ctDNA half-life time, and the ctDNA shedding rate strongly influence ctDNA levels (fig. S3).

To further demonstrate the generality of this framework and the accuracy of our analytical results, we considered tumors with different sizes, growth rates, and cell turnover rates. As expected, a tumor with 0.5 billion cells leads to half the number of circulating biomarkers (C ≈ 286 hGE; Fig. 2A). More unexpectedly, a slowly growing lung cancer (r = 0.1%) leads to a substantially higher number of 585 hGE than a faster-growing cancer (r = 4%) with 502 hGE at the same size of 1 cm3, assuming that the faster growth is achieved by proportionally increased birth and decreased death rates (Fig. 2B).

1 cm3腫瘤血液中的ctDNA平均克隆突變VAF為0.008%

轉(zhuǎn)換后的ctDNA平均克隆突變VAF與腫瘤體積線性相關(guān)

In ctDNA-positive patients, pathologic tumour size correlated with the mean plasma VAF of clonal SNVs (Spearman’s ρ=0.405, P=0.005, n=46, Extended Data Fig. 4b). Computed tomography (CT) scan volumetric analyses were evaluated in 37 out of 46 ctDNA-positive patients (see Extended Data Fig. 4c). Tumour volume from CT analyses correlated with mean clonal plasma VAF (Spearman’s ρ=0.63, P<0.001, n = 37, Fig. 3a).

A linear relationship between log-transformed volume and log-transformed mean clonal VAF values was observed (Fig. 3a). The line of best fit applied to the data was consistent with the line fitted to NSCLC volumetric data and ctDNA plasma VAFs that have been reported previously16 (Extended Data Fig. 4d).

Linear modelling based on the TRACERx data predicted that a primary tumour burden of 10 cm3 would result in a mean clonal plasma VAF of 0.1% (95% confidence interval, 0.06–0.18%) (Fig. 3b).

On the assumption that a cancer cell volume of 1 cm3 contains 9.4×107 cells, a plasma VAF of 0.1% would correspond to a primary NSCLC malignant burden of 302 million tumour cells

ctDNA可檢測(cè)性與NSCLC病理分型相關(guān)

Centrally reviewed pathology data revealed that ctDNA detection was associated with histological subtype: 97% (30 out of 31) of lung squamous cell carcinomas (LUSCs) and 71% (5 out of 7) of other NSCLC subtypes were ctDNA-positive, compared with 19% (11 out of 58) of lung adenocarcinomas (LUADs) (Fig. 2a).

image.png

ctDNA was detected in 94% (16 out of 17) of stage I LUSCs compared with 13% (5 out of 39) of stage I LUADs (Extended Data Fig. 3a).

參考資料

  1. Avanzini, Stefano et al. “A mathematical model of ctDNA shedding predicts tumor detection size.” Science advances vol. 6,50 eabc4308. 11 Dec. 2020, doi:10.1126/sciadv.abc4308

  2. Abbosh, Christopher et al. “Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.” Nature vol. 545,7655 (2017): 446-451. doi:10.1038/nature22364

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末鹉勒,一起剝皮案震驚了整個(gè)濱河市姨拥,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌衔沼,老刑警劉巖欲芹,帶你破解...
    沈念sama閱讀 206,126評(píng)論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件卿啡,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡菱父,警方通過查閱死者的電腦和手機(jī)颈娜,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,254評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來浙宜,“玉大人官辽,你說我怎么就攤上這事∷谒玻” “怎么了同仆?”我有些...
    開封第一講書人閱讀 152,445評(píng)論 0 341
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)亩钟。 經(jīng)常有香客問我乓梨,道長(zhǎng),這世上最難降的妖魔是什么清酥? 我笑而不...
    開封第一講書人閱讀 55,185評(píng)論 1 278
  • 正文 為了忘掉前任,我火速辦了婚禮蕴侣,結(jié)果婚禮上焰轻,老公的妹妹穿的比我還像新娘。我一直安慰自己昆雀,他們只是感情好辱志,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,178評(píng)論 5 371
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著狞膘,像睡著了一般揩懒。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上挽封,一...
    開封第一講書人閱讀 48,970評(píng)論 1 284
  • 那天已球,我揣著相機(jī)與錄音,去河邊找鬼。 笑死智亮,一個(gè)胖子當(dāng)著我的面吹牛忆某,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播阔蛉,決...
    沈念sama閱讀 38,276評(píng)論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼弃舒,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了状原?” 一聲冷哼從身側(cè)響起聋呢,我...
    開封第一講書人閱讀 36,927評(píng)論 0 259
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎颠区,沒想到半個(gè)月后削锰,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 43,400評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡瓦呼,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,883評(píng)論 2 323
  • 正文 我和宋清朗相戀三年喂窟,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片央串。...
    茶點(diǎn)故事閱讀 37,997評(píng)論 1 333
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡磨澡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出质和,到底是詐尸還是另有隱情稳摄,我是刑警寧澤,帶...
    沈念sama閱讀 33,646評(píng)論 4 322
  • 正文 年R本政府宣布饲宿,位于F島的核電站厦酬,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏瘫想。R本人自食惡果不足惜仗阅,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,213評(píng)論 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望国夜。 院中可真熱鬧减噪,春花似錦、人聲如沸车吹。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,204評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽窄驹。三九已至朝卒,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間乐埠,已是汗流浹背抗斤。 一陣腳步聲響...
    開封第一講書人閱讀 31,423評(píng)論 1 260
  • 我被黑心中介騙來泰國(guó)打工囚企, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人豪治。 一個(gè)月前我還...
    沈念sama閱讀 45,423評(píng)論 2 352
  • 正文 我出身青樓洞拨,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親负拟。 傳聞我的和親對(duì)象是個(gè)殘疾皇子烦衣,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,722評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容