Popular Deep Learning Tools – a review 深度學(xué)習(xí)工具比較

In?2015 KDnuggets Software Poll, a new category for Deep Learning Tools was added, with most popular tools in that poll listed below.

Pylearn2 (55 users)

Theano (50)

Caffe (29)

Torch (27)

Cuda-convnet (17)

Deeplearning4j (12)

Other Deep Learning Tools (106)

I haven’t used all of them, so this is a brief summary of these popular tools based on their homepages and tutorials.

Theano&Pylearn2:

Theano and Pylearn2 are both developed at University of Montreal with most developers in the LISA group led by Yoshua Bengio. Theano?is a Python library, and you can also consider it as a mathematical expression compiler. It is good for making algorithms from scratch.Hereis an intuitive example of Theano training.

If we want to use standard algorithms, we can write Pylearn2 plugins as Theano expressions, and Theano will optimize and stabilize the expressions. It includes all things needed for multilayer perceptron/RBM/Stacked Denoting Autoencoder/ConvNets.Hereis a quick start tutorial to walk you through some basic ideas on Pylearn2.

Caffe:

Caffe is developed by the Berkeley Vision and Learning Center, created by Yangqing Jia and led by Evan Shelhamer. It is a fast and readable implementation of ConvNets in C++. As shown on its official page,?Caffe can process?over 60M images per day?with a single NVIDIA K40 GPU with AlexNet. It can be used like a toolkit for image classification, while not for other deep learning application such as text or speech.

Torch&OverFeat:

Torch is written in Lua, and used at NYU, Facebook AI lab and Google DeepMind. It claims to provide a MATLAB-like environment for machine learning algorithms. Why did they choose Lua/LuaJIT instead of the more popular Python? They said inTorch7 paperthat “Lua is easily to be integrated with C so within a few hours’ work, any C or C++ library can become a Lua library.” With Lua written in pure ANSI C, it can be easily compiled for arbitrary targets.

OverFeat is a feature extractor trained on the ImageNet dataset with Torch7 and also easy to start with.

Cuda:

There is no doubt that GPU accelerates deep learning researches these days. News about GPU especially Nvidia Cuda is all over the Internet.Cuda-convnet/CuDNNsupports all the mainstream softwares such as Caffe, Torch and Theano and is very easy to enable.

Deeplearning4j:

Unlike the above packages, Deeplearning4j is designed to be used in business environments, rather than as a research tool. As on its introduction, DL4J is a “Java-based, industry-focused, commercially supported, distributed deep-learning framework.”

Comparison

These tools seem to be in a friendly competition of speed and ease of use.

Caffe developers say that “Caffe?is the fastest convnet implementation available.”

Torch7 is proved to be faster than Theano on most benchmarks as shown inTorch7 paper.

Soumith gave hisconvnet benchmarksof all public open-source implementations.

A comparison table of some popular deep learning tools is listed in theCaffe paper.

There isa thread on redditabout “best framework for deep neural nets”. DL4J also givesDL4J vs. Torch vs. Theano vs. Caffeon its website.

Related:

R leads RapidMiner, Python catches up, Big Data tools grow, Spark ignites

Where to Learn Deep Learning – Courses, Tutorials, Software

CuDNN – A new library for Deep Learning

What is your favorite Deep Learning package?

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末番捂,一起剝皮案震驚了整個濱河市拿诸,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌布朦,老刑警劉巖贬丛,帶你破解...
    沈念sama閱讀 212,657評論 6 492
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異勋眯,居然都是意外死亡,警方通過查閱死者的電腦和手機矗积,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,662評論 3 385
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來敞咧,“玉大人漠魏,你說我怎么就攤上這事⊥” “怎么了?”我有些...
    開封第一講書人閱讀 158,143評論 0 348
  • 文/不壞的土叔 我叫張陵哪自,是天一觀的道長丰包。 經(jīng)常有香客問我,道長壤巷,這世上最難降的妖魔是什么邑彪? 我笑而不...
    開封第一講書人閱讀 56,732評論 1 284
  • 正文 為了忘掉前任,我火速辦了婚禮胧华,結(jié)果婚禮上寄症,老公的妹妹穿的比我還像新娘。我一直安慰自己矩动,他們只是感情好有巧,可當(dāng)我...
    茶點故事閱讀 65,837評論 6 386
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著悲没,像睡著了一般篮迎。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上示姿,一...
    開封第一講書人閱讀 50,036評論 1 291
  • 那天甜橱,我揣著相機與錄音,去河邊找鬼栈戳。 笑死岂傲,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的子檀。 我是一名探鬼主播镊掖,決...
    沈念sama閱讀 39,126評論 3 410
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼命锄!你這毒婦竟也來了堰乔?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 37,868評論 0 268
  • 序言:老撾萬榮一對情侶失蹤脐恩,失蹤者是張志新(化名)和其女友劉穎镐侯,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 44,315評論 1 303
  • 正文 獨居荒郊野嶺守林人離奇死亡苟翻,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 36,641評論 2 327
  • 正文 我和宋清朗相戀三年韵卤,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片崇猫。...
    茶點故事閱讀 38,773評論 1 341
  • 序言:一個原本活蹦亂跳的男人離奇死亡沈条,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出诅炉,到底是詐尸還是另有隱情蜡歹,我是刑警寧澤,帶...
    沈念sama閱讀 34,470評論 4 333
  • 正文 年R本政府宣布涕烧,位于F島的核電站月而,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏议纯。R本人自食惡果不足惜父款,卻給世界環(huán)境...
    茶點故事閱讀 40,126評論 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望瞻凤。 院中可真熱鬧憨攒,春花似錦、人聲如沸阀参。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,859評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽结笨。三九已至包晰,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間炕吸,已是汗流浹背伐憾。 一陣腳步聲響...
    開封第一講書人閱讀 32,095評論 1 267
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留赫模,地道東北人树肃。 一個月前我還...
    沈念sama閱讀 46,584評論 2 362
  • 正文 我出身青樓,卻偏偏與公主長得像瀑罗,于是被迫代替她去往敵國和親胸嘴。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 43,676評論 2 351

推薦閱讀更多精彩內(nèi)容