Interactive Visual Statistics(1)

Concept Summary: Interactive Visual Statistics

Let’s summarize what we just learned in each of the concept videos. Then, we’ll continue with the hands-on lesson where you can apply each concept.

Statistics Worksheet

For a dataset in Dataiku DSS, it is quite useful to have a designated space with the tools for performing statistical analyses. This is just what a statistics worksheet provides!

A Worksheet provides a visual summary of exploratory data analysis (EDA) tasks. To create or access worksheets, go to the Statistics tab of your dataset.

The worksheet header consists of a worksheet menu. You can use the worksheet menu to create a new worksheet or rename, duplicate, and delete worksheets. You can also switch from one worksheet to another.

There are also buttons and menu items for creating a new card, running the worksheet in a container, changing the global confidence level for statistical tests, and specifying how to sample the dataset used in the worksheet. Note that by default, DSS computes statistics on a sample of first records in your dataset.

For more information about worksheets, see The Worksheet Interface in the reference documentation.

Statistics Card

Cards in a worksheet provide a straightforward way to perform various statistical tasks while keeping your workspace well organized.

In DSS, a Card is used to perform a specific EDA task. For example, you can describe your dataset, draw inferences about an underlying population, analyze the effect of dimensionality reduction, and so on.

A worksheet can have many cards, with the cards appearing below the worksheet header. When creating a card, specify the card type and its corresponding parameter values.

All cards have a configuration menu (?) for editing card settings, duplicating or deleting the card, viewing the JSON payloads and responses (for the purpose of leveraging the public API), and so on. Some cards also contain multiple sections, with each section having its own configuration menu.

Finally, the Split by menu in a card is useful for grouping your dataset by a specified variable. This allows the card to perform computations on each data subgroup.

For more information about cards, see Elements of a card in the reference documentation.

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末喂击,一起剝皮案震驚了整個(gè)濱河市撒强,隨后出現(xiàn)的幾起案子辆琅,更是在濱河造成了極大的恐慌滞诺,老刑警劉巖,帶你破解...
    沈念sama閱讀 217,406評(píng)論 6 503
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件百匆,死亡現(xiàn)場(chǎng)離奇詭異砌些,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)加匈,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,732評(píng)論 3 393
  • 文/潘曉璐 我一進(jìn)店門寄症,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人矩动,你說(shuō)我怎么就攤上這事有巧。” “怎么了悲没?”我有些...
    開(kāi)封第一講書(shū)人閱讀 163,711評(píng)論 0 353
  • 文/不壞的土叔 我叫張陵篮迎,是天一觀的道長(zhǎng)男图。 經(jīng)常有香客問(wèn)我,道長(zhǎng)甜橱,這世上最難降的妖魔是什么逊笆? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,380評(píng)論 1 293
  • 正文 為了忘掉前任,我火速辦了婚禮岂傲,結(jié)果婚禮上难裆,老公的妹妹穿的比我還像新娘。我一直安慰自己镊掖,他們只是感情好乃戈,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,432評(píng)論 6 392
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著亩进,像睡著了一般症虑。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上归薛,一...
    開(kāi)封第一講書(shū)人閱讀 51,301評(píng)論 1 301
  • 那天谍憔,我揣著相機(jī)與錄音,去河邊找鬼主籍。 笑死习贫,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的千元。 我是一名探鬼主播苫昌,決...
    沈念sama閱讀 40,145評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼诅炉!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起屋厘,我...
    開(kāi)封第一講書(shū)人閱讀 39,008評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤涕烧,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后汗洒,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體议纯,經(jīng)...
    沈念sama閱讀 45,443評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,649評(píng)論 3 334
  • 正文 我和宋清朗相戀三年溢谤,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了瞻凤。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 39,795評(píng)論 1 347
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡世杀,死狀恐怖阀参,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情瞻坝,我是刑警寧澤蛛壳,帶...
    沈念sama閱讀 35,501評(píng)論 5 345
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響衙荐,放射性物質(zhì)發(fā)生泄漏捞挥。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,119評(píng)論 3 328
  • 文/蒙蒙 一忧吟、第九天 我趴在偏房一處隱蔽的房頂上張望砌函。 院中可真熱鬧,春花似錦溜族、人聲如沸讹俊。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 31,731評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)劣像。三九已至,卻和暖如春摧玫,著一層夾襖步出監(jiān)牢的瞬間耳奕,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 32,865評(píng)論 1 269
  • 我被黑心中介騙來(lái)泰國(guó)打工诬像, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留屋群,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 47,899評(píng)論 2 370
  • 正文 我出身青樓坏挠,卻偏偏與公主長(zhǎng)得像芍躏,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子降狠,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,724評(píng)論 2 354

推薦閱讀更多精彩內(nèi)容