【NAS工具箱】Drop Path介紹 + Dropout回顧

【前言】Drop Path是NAS中常用到的一種正則化方法痘番,由于網(wǎng)絡(luò)訓練的過程中常常是動態(tài)的醉冤,Drop Path就成了一個不錯的正則化工具蓖宦,在FractalNet叁执、NASNet等都有廣泛使用茄厘。

Dropout

Dropout是最早的用于解決過擬合的方法,是所有drop類方法的大前輩谈宛。Dropout在12年被Hinton提出次哈,并且在ImageNet Classification with Deep Convolutional Neural Network工作AlexNet中使用到了Dropout。

原理 :在前向傳播的時候吆录,讓某個神經(jīng)元激活以概率1-keep_prob(0<p<1)停止工作窑滞。

功能 : 這樣可以讓模型泛化能力更強,因為其不會過于以來某些局部的節(jié)點恢筝。訓練階段以keep_prob的概率保留哀卫,以1-keep_prob的概率關(guān)閉;測試階段所有的神經(jīng)元都不關(guān)閉撬槽,但是對訓練階段應(yīng)用了dropout的神經(jīng)元此改,輸出值需要乘以keep_prob。

具體是這樣的:

假設(shè)一個神經(jīng)元的輸出激活值為a侄柔,在不使用dropout的情況下共啃,其輸出期望值為a,如果使用了dropout暂题,神經(jīng)元就可能有保留和關(guān)閉兩種狀態(tài)移剪,把它看作一個離散型隨機變量,它就符合概率論中的0-1分布薪者,其輸出激活值的期望變?yōu)?p*a+(1-p)*0=pa纵苛,此時若要保持期望和不使用dropout時一致,就要除以 p。 作者:種子_fe 鏈接:https://www.imooc.com/article/30129

實現(xiàn) : pytorch中的實現(xiàn)如下攻人。

<pre class="md-fences md-end-block ty-contain-cm modeLoaded" spellcheck="false" lang="python" cid="n13" mdtype="fences" style="box-sizing: border-box; overflow: visible; font-family: Menlo, Monaco, "Courier New", monospace; font-size: 1.125rem; display: block; break-inside: avoid; text-align: left; white-space: normal; background-image: inherit; background-position: inherit; background-size: inherit; background-repeat: inherit; background-attachment: inherit; background-origin: inherit; background-clip: inherit; background-color: rgb(255, 255, 255); position: relative !important; color: rgb(122, 122, 122); padding: 0.5rem 1.125em; margin-bottom: 0.88em; border: 1px solid rgb(122, 122, 122); line-height: 1.5rem; width: inherit; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">class _DropoutNd(Module):
constants = ['p', 'inplace']
p: float
inplace: bool

def init(self, p: float = 0.5, inplace: bool = False) -> None:
super(_DropoutNd, self).init()
if p < 0 or p > 1:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
self.p = p
self.inplace = inplace

def extra_repr(self) -> str:
return 'p={}, inplace={}'.format(self.p, self.inplace)

class Dropout(_DropoutNd):
def forward(self, input: Tensor) -> Tensor:
return F.dropout(input, self.p, self.training, self.inplace)</pre>

funtional.py中的dropout實現(xiàn):

<pre class="md-fences md-end-block ty-contain-cm modeLoaded" spellcheck="false" lang="python" cid="n15" mdtype="fences" style="box-sizing: border-box; overflow: visible; font-family: Menlo, Monaco, "Courier New", monospace; font-size: 1.125rem; display: block; break-inside: avoid; text-align: left; white-space: normal; background-image: inherit; background-position: inherit; background-size: inherit; background-repeat: inherit; background-attachment: inherit; background-origin: inherit; background-clip: inherit; background-color: rgb(255, 255, 255); position: relative !important; color: rgb(122, 122, 122); padding: 0.5rem 1.125em; margin-bottom: 0.88em; border: 1px solid rgb(122, 122, 122); line-height: 1.5rem; width: inherit; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">def dropout(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor:
r"""
During training, randomly zeroes some of the elements of the input
tensor with probability :attr:p using samples from a Bernoulli
distribution.
See :class:~torch.nn.Dropout for details.
Args:
p: probability of an element to be zeroed. Default: 0.5
training: apply dropout if is True. Default: True
inplace: If set to True, will do this operation in-place. Default: False
"""
if has_torch_function_unary(input):
return handle_torch_function(dropout, (input,), input, p=p, training=training, inplace=inplace)
if p < 0.0 or p > 1.0:
raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p))
return VF.dropout(input, p, training) if inplace else _VF.dropout(input, p, training)</pre>

最終在Dropout.cpp中找到具體實現(xiàn):

<pre class="md-fences md-end-block ty-contain-cm modeLoaded" spellcheck="false" lang="c++" cid="n17" mdtype="fences" style="box-sizing: border-box; overflow: visible; font-family: Menlo, Monaco, "Courier New", monospace; font-size: 1.125rem; display: block; break-inside: avoid; text-align: left; white-space: normal; background-image: inherit; background-position: inherit; background-size: inherit; background-repeat: inherit; background-attachment: inherit; background-origin: inherit; background-clip: inherit; background-color: rgb(255, 255, 255); position: relative !important; color: rgb(122, 122, 122); padding: 0.5rem 1.125em; margin-bottom: 0.88em; border: 1px solid rgb(122, 122, 122); line-height: 1.5rem; width: inherit; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">template<bool feature_dropout, bool alpha_dropout, bool inplace, typename T>
Ctype<inplace> _dropout_impl(T& input, double p, bool train) {
TORCH_CHECK(p >= 0 && p <= 1, "dropout probability has to be between 0 and 1, but got ", p);
if (p == 0 || !train || input.numel() == 0) {
return input;
}

if (p == 1) {
return multiply<inplace>(input, at::zeros({}, input.options()));
}

at::Tensor b; // used for alpha_dropout only
auto noise = feature_dropout ? make_feature_noise(input) : at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
noise.bernoulli_(1 - p);
if (alpha_dropout) {
constexpr double alpha = 1.7580993408473766;
double a = 1. / std::sqrt((alpha * alpha * p + 1) * (1 - p));
b = noise.add(-1).mul_(alpha * a).add_(alpha * a * p);
noise.mul_(a);
} else {
noise.div_(1 - p);
}

if (!alpha_dropout) {
return multiply<inplace>(input, noise);
} else {
return multiply<inplace>(input, noise).add_(b);
}
}</pre>

流程:

  • 判斷p的范圍 以及訓練狀態(tài)

  • 使用1-p的概率得到伯努利分布(0-1分布)

  • (input / 1-p) * 伯努利分布

Drop Path

原理 :字如其名幔虏,Drop Path就是隨機將深度學習網(wǎng)絡(luò)中的多分支結(jié)構(gòu)隨機刪除。

功能 :一般可以作為正則化手段加入網(wǎng)絡(luò)贝椿,但是會增加網(wǎng)絡(luò)訓練的難度想括。尤其是在NAS問題中,如果設(shè)置的drop prob過高烙博,模型甚至有可能不收斂瑟蜈。

實現(xiàn)

<pre class="md-fences md-end-block ty-contain-cm modeLoaded" spellcheck="false" lang="python" cid="n31" mdtype="fences" style="box-sizing: border-box; overflow: visible; font-family: Menlo, Monaco, "Courier New", monospace; font-size: 1.125rem; display: block; break-inside: avoid; text-align: left; white-space: normal; background-image: inherit; background-position: inherit; background-size: inherit; background-repeat: inherit; background-attachment: inherit; background-origin: inherit; background-clip: inherit; background-color: rgb(255, 255, 255); position: relative !important; color: rgb(122, 122, 122); padding: 0.5rem 1.125em; margin-bottom: 0.88em; border: 1px solid rgb(122, 122, 122); line-height: 1.5rem; width: inherit; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">def drop_path(x, drop_prob: float = 0., training: bool = False):
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output

class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def init(self, drop_prob=None):
super(DropPath, self).init()
self.drop_prob = drop_prob

def forward(self, x):
return drop_path(x, self.drop_prob, self.training)</pre>

有了Dropout的理論鋪墊,這里的實現(xiàn)就比較明了了渣窜,具體使用的時候一般是這樣的:

<pre class="md-fences md-end-block ty-contain-cm modeLoaded" spellcheck="false" lang="python" cid="n33" mdtype="fences" style="box-sizing: border-box; overflow: visible; font-family: Menlo, Monaco, "Courier New", monospace; font-size: 1.125rem; display: block; break-inside: avoid; text-align: left; white-space: normal; background-image: inherit; background-position: inherit; background-size: inherit; background-repeat: inherit; background-attachment: inherit; background-origin: inherit; background-clip: inherit; background-color: rgb(255, 255, 255); position: relative !important; color: rgb(122, 122, 122); padding: 0.5rem 1.125em; margin-bottom: 0.88em; border: 1px solid rgb(122, 122, 122); line-height: 1.5rem; width: inherit; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">x = x + self.drop_path(self.conv(x))</pre>

Drop Path不能直接這樣使用:

<pre class="md-fences md-end-block ty-contain-cm modeLoaded" spellcheck="false" lang="python" cid="n35" mdtype="fences" style="box-sizing: border-box; overflow: visible; font-family: Menlo, Monaco, "Courier New", monospace; font-size: 1.125rem; display: block; break-inside: avoid; text-align: left; white-space: normal; background-image: inherit; background-position: inherit; background-size: inherit; background-repeat: inherit; background-attachment: inherit; background-origin: inherit; background-clip: inherit; background-color: rgb(255, 255, 255); position: relative !important; color: rgb(122, 122, 122); padding: 0.5rem 1.125em; margin-bottom: 0.88em; border: 1px solid rgb(122, 122, 122); line-height: 1.5rem; width: inherit; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">x = self.drop_path(x)</pre>

Reference

https://www.cnblogs.com/dan-baishucaizi/p/14703263.html

https://www.imooc.com/article/30129

https://www.github.com/pytorch/pytorch

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末铺根,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子乔宿,更是在濱河造成了極大的恐慌位迂,老刑警劉巖,帶你破解...
    沈念sama閱讀 222,000評論 6 515
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件详瑞,死亡現(xiàn)場離奇詭異掂林,居然都是意外死亡,警方通過查閱死者的電腦和手機坝橡,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,745評論 3 399
  • 文/潘曉璐 我一進店門泻帮,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人计寇,你說我怎么就攤上這事锣杂。” “怎么了番宁?”我有些...
    開封第一講書人閱讀 168,561評論 0 360
  • 文/不壞的土叔 我叫張陵元莫,是天一觀的道長。 經(jīng)常有香客問我蝶押,道長踱蠢,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 59,782評論 1 298
  • 正文 為了忘掉前任播聪,我火速辦了婚禮朽基,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘离陶。我一直安慰自己稼虎,他們只是感情好,可當我...
    茶點故事閱讀 68,798評論 6 397
  • 文/花漫 我一把揭開白布招刨。 她就那樣靜靜地躺著霎俩,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上打却,一...
    開封第一講書人閱讀 52,394評論 1 310
  • 那天杉适,我揣著相機與錄音,去河邊找鬼柳击。 笑死猿推,一個胖子當著我的面吹牛,可吹牛的內(nèi)容都是我干的捌肴。 我是一名探鬼主播蹬叭,決...
    沈念sama閱讀 40,952評論 3 421
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼状知!你這毒婦竟也來了秽五?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 39,852評論 0 276
  • 序言:老撾萬榮一對情侶失蹤饥悴,失蹤者是張志新(化名)和其女友劉穎坦喘,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體西设,經(jīng)...
    沈念sama閱讀 46,409評論 1 318
  • 正文 獨居荒郊野嶺守林人離奇死亡瓣铣,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 38,483評論 3 341
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了济榨。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片坯沪。...
    茶點故事閱讀 40,615評論 1 352
  • 序言:一個原本活蹦亂跳的男人離奇死亡绿映,死狀恐怖擒滑,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情叉弦,我是刑警寧澤丐一,帶...
    沈念sama閱讀 36,303評論 5 350
  • 正文 年R本政府宣布,位于F島的核電站淹冰,受9級特大地震影響库车,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜樱拴,卻給世界環(huán)境...
    茶點故事閱讀 41,979評論 3 334
  • 文/蒙蒙 一柠衍、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧晶乔,春花似錦珍坊、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,470評論 0 24
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春履怯,著一層夾襖步出監(jiān)牢的瞬間回还,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 33,571評論 1 272
  • 我被黑心中介騙來泰國打工叹洲, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留柠硕,地道東北人。 一個月前我還...
    沈念sama閱讀 49,041評論 3 377
  • 正文 我出身青樓运提,卻偏偏與公主長得像仅叫,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子糙捺,可洞房花燭夜當晚...
    茶點故事閱讀 45,630評論 2 359

推薦閱讀更多精彩內(nèi)容