細胞通訊軟件RNAMagnet

今天我們來分享一下一款新的細胞通訊分析軟件----RNAMagnet
我們來詳細了解一下這個軟件的功能:

安裝:

install.packages("devtools")
devtools::install_github("veltenlab/rnamagnet")

我們來逐步分析一下這個軟件:

第一步:獲取包內(nèi)的配受體對

require(RNAMagnet)
require(ggplot2)
require(Seurat)
ligrec <- getLigandsReceptors("1.0.0",cellularCompartment = c("ECM","Surface","Both"),manualAnnotation = "Correct")
head(ligrec)
我們來詳細看一下這個函數(shù):
园爷?getLigandsReceptors
參數(shù)的解讀
version : 默認是latest
        ? latest points to ‘2.1.0’
        ? 1.0.0 包含所有在骨髓中表達的基因的人工注釋。This version was used for analysis is the Baccin et al paper. Information on heterodimeric receptors is only included for integrins.也就是說1.0.0版本具有很大的局限性,僅運用于該文章磅叛。
        ? 2.0.0  contains manual annotation for all genes in the geneome (not yet complete).  庫很全面但是沒有完成记盒。
        ? 2.1.0  integrates heterodimer information for non-integrn receptors from cellphoneDB.  這個地方主要是添加了cellphoneDB的多聚體信息。
        ? 3.0.0 adds a translation of the complete cellphoneDB to mouse homologues (not tested). 人鼠之間的配受體轉(zhuǎn)換。
        ? Alternatively, a data frame with the same column names as ‘ligandsReceptors_1.0.0’ can be used.這個我們應(yīng)該不會用到吓蘑。
cellularCompartment :
        A character vector to select permitted localizations of the *ligand*. Valid entries are ‘Membrane’挣柬, ‘ECM’, ‘Secreted’ and ‘Both’, which refers to membrane-bound ligands that can also be secreted.這個地方選擇配受體分析的類型潮酒。我們一般都是選在分泌型的。
manualAnnotation:
        A character vector to select permitted annotation status of the interaction. Valid entries are ‘Correct’邪蛔, ‘Incorrect’, ‘Not Expressed’ (i.e. entries not annotated in v1.0.0) and ‘Irrelevant’ (i.e. entries we consider correct but not relevant at homeostasis, e.g. interactions involving activated components of the complement system)急黎。  這個參數(shù)我們一般選擇為Correct,越準(zhǔn)確越好。
ligandClass:
        A character vector to select permitted classes of ligands.Defaults to all, i.e. ‘c("Other","Cytokine","Chemokine","GrowthFactor","Interleukin")’  這個地方選擇配受體的生物學(xué)類型勃教。

這個地方還是值得注意的淤击,庫里面的配受體我查看過了,只有小鼠的注釋故源,默認該軟件只能運行小鼠污抬,如果是人的樣本,需要我們自己準(zhǔn)備配受體對绳军,例如cellphoneDB的配受體對印机。

第二步,分析細胞之間的adhere

我們先來看看函數(shù):
门驾?RNAMagnetAnchors
Description:
     RNAMagnet comes in two flavors: ‘RNAMagnetAnchors’ and
     ‘RNAMagnetSignaling’. This function is meant to identify, for each
     single cell from a ‘seurat’ object, the propensity to physically
     adhere to a set of anchor populations. For example, this function
     can identify if a single cell is more likely to bind to arteriolar
     or sinusoidal vessels.
從描述上看射赛,計算每個細胞對于anchors的物理adhere,其實就是計算細胞與anchors的距離(一種算法)奶是。
參數(shù):
     anchors: A character vector of anchor populations. Entries must be levels of ‘seurat@ident’  這個參數(shù)是用來指定計算細胞adhere的anchors楣责。
    return: Determines object to return; one of "summary" or "rnamagnet-class" 。
##我們運行一下:
result <- RNAMagnetAnchors(NicheData10x, anchors = c("Sinusoidal ECs","Arteriolar ECs","Smooth muscle","Osteoblasts"), .version = "1.0.0")
得到結(jié)果:
                   direction adhesiveness            X1            X2
AAACCCAAGCCGTTGC-1         1     75.78937  0.0063449571 -0.0063449571
AAACCCAGTTAATCGC-1         1     74.40186  0.0095516182 -0.0095516182
AAACGAAAGTTAGTAG-1         1     67.19046  0.0053974087 -0.0053974087
AAACGAATCTTGGGCG-1         1     53.83670  0.0206724136 -0.0206724136
AAAGTCCTCTTCTTCC-1         2     80.60037 -0.0009649741  0.0009649741
AAAGTGACAAGTATCC-1         2     64.71945 -0.0062044244  0.0062044244
這個結(jié)果的解讀來看诫隅,每個細胞的方向就是我們指定的anchors腐魂,看看細胞的方向和adhere。
結(jié)果解讀在這里:
* The anchor population that a cell is most specifically interacting with ('direction')
* The overall strength of the interaction ('adhesiveness')
* Specificity scores for interaction with each of the anchor populations.

第三步:做一些可視化:

require(plyr)
require(reshape2)
require(pheatmap)
result$id <- Idents(NicheData10x)
summarised <- ddply(result, c("id"), summarise,  RNAmagnet.score = table(direction) / length(direction), n = rep(length(direction),4), RNAmagnet.adhesiveness = rep(mean(adhesiveness),4), experiment = names(table(direction)))
castMagnet <- dcast(subset(summarised, RNAmagnet.adhesiveness > 35), id ~ experiment, value.var = "RNAmagnet.score")
rownames(castMagnet) <- castMagnet[,1]
castMagnet <- castMagnet[,-1]
castMagnet <- t(apply(castMagnet,1,function(x) (x-min(x)) / (max(x)-min(x))))
pheatmap(castMagnet, cluster_cols = F, annotation_legend = F, annotation_names_col = F, color = colorRampPalette(c("white","white","blue","red"))(100), fontsize=8, treeheight_row = 20)
圖片.png

可以看到各個cluster之間的對于anchors的adhere逐纬。

接下來就是推斷細胞之間的相互作用了蛔屹,

result <- RNAMagnetSignaling(NicheData10x, .version = "2.1.0")
PlotSignalingNetwork(result, threshold = 0.01)
圖片.png

這個軟件大家不妨嘗試一下。

接下來就是原理

How the spatial
relationships of cell types are established and maintained in complex organs such as the BM remains poorly understood豁生。It has been suggested that the expression of cell adhesion molecules represents an important mechanism that translates basic genetic information into complex three-dimensional patterns of cells in tissues兔毒。細胞黏附分子對于細胞空間位置的重要作用。作者編輯了完整的注釋完好的細胞粘附受體及其同源質(zhì)膜或細胞外基質(zhì)結(jié)合配體的詳細list甸箱,并開發(fā)了RNA-Magnet算法育叁,以研究是否可以通過表達cell adhesion molecules來預(yù)測細胞的相對位置。RNA-Magnet predicts the potential physical interactions between single cells and selected attractor populations (anchors) based on the expression patterns of the cell-surface receptors and their cognate surface-expressed binding partners芍殖。依據(jù)膜結(jié)合的配受體來計算細胞之間的物理距離豪嗽,RNA-Magnet provides scores for the strength of attraction (RNA-Magnet adhesiveness) for each cell and a direction indicating the attractor population the cell is most attracted to (RNA-Magnet location).作者運用自己的數(shù)據(jù)來運用該軟件,To investigate whether RNA-Magnet is able to recapitulate the spatial relationships of BM cell types, we introduced four anchor populations representing the following niches: osteoblasts for the endosteal niche, sinusoidal ECs for the sinusoidal niche, as well as arterial ECs and smooth muscle cells to represent the arteriolar niches豌骏。The predicted adhesiveness of BM populations to distinct niches correlated strongly with their degree of differential localization, as measured by spatial transcriptomics龟梦。下面是作者的圖(對細胞距離的預(yù)判):

圖片.png

Localization was also recapitulated with high accuracy for almost all populations 。 including the differential localization of Adipo- and Osteo-CAR cells to the sinusoidal and arteriolar endothelia, respectively窃躲。Together, these observations demonstrate the ability of RNA-Magnet to predict spatial localization from single-cell gene expression data and highlight the importance of cell adhesion proteins for tissue organization in the BM计贰。看到這里蒂窒,相信大家明白了函數(shù)RNAMagnetAnchors的用處到底是什么了躁倒。
接下來我們來看一下通訊的原理:Systems-level analysis of intercellular signalling interactions of
BM cell types.

We applied RNA-Magnet to soluble signalling mediators (for example cytokines, growth factors and so on) and their receptors to gain a systems-level overview of potential intercellular signalling interactions荞怒。In accordance with the specific localization of the Osteo- and Adipo-CAR populations to arteriolar or sinusoidal scaffolds,an analysis of the net signalling output of distinct local niches implied that lymphoid and myeloid progenitors receive strong input from cytokines produced in the vascular and especially sinusoidal niches。也是計算特異的配受體對秧秉。

如何計算細胞之間的交流強度褐桌?

  1. Ligand-receptor pairs are selected based on the parameters ‘.version’, ‘.cellularCompartment’ and ‘.manualAnnotation’. Choice of ‘.cellularCompartment’ is crucial for determining the algorithm's behavior, e.g. if set to ‘c("Secreted","Both")’, paracrine signaling interactions involving soluble ligands are investigated.
  2. Dropout values in the expression levels of ligands and receptors are imputed using ‘magic’福贞。
  3. Mean expression level of ligands and receptors is computed for all anchor populations.
  4. For each cell or anchor population, the expression of each ligand and receptor is encoded as a fuzzy logic variable
  5. Fuzzy logic AND is used to compute probabilities for a given interaction to be active between a single cell and an anchor population
  6. An interaction score is computed as the sum of interaction probabilities across all possible ligand-receptor pairs
  7. Specificty scores are computed by comparing interaction scores to average interaction scores in a local neighborhood.
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
禁止轉(zhuǎn)載撩嚼,如需轉(zhuǎn)載請通過簡信或評論聯(lián)系作者。
  • 序言:七十年代末挖帘,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子恋技,更是在濱河造成了極大的恐慌拇舀,老刑警劉巖,帶你破解...
    沈念sama閱讀 206,126評論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件蜻底,死亡現(xiàn)場離奇詭異骄崩,居然都是意外死亡,警方通過查閱死者的電腦和手機薄辅,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,254評論 2 382
  • 文/潘曉璐 我一進店門要拂,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人站楚,你說我怎么就攤上這事脱惰。” “怎么了窿春?”我有些...
    開封第一講書人閱讀 152,445評論 0 341
  • 文/不壞的土叔 我叫張陵拉一,是天一觀的道長。 經(jīng)常有香客問我旧乞,道長蔚润,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 55,185評論 1 278
  • 正文 為了忘掉前任尺栖,我火速辦了婚禮嫡纠,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘延赌。我一直安慰自己除盏,他們只是感情好,可當(dāng)我...
    茶點故事閱讀 64,178評論 5 371
  • 文/花漫 我一把揭開白布皮胡。 她就那樣靜靜地躺著痴颊,像睡著了一般。 火紅的嫁衣襯著肌膚如雪屡贺。 梳的紋絲不亂的頭發(fā)上蠢棱,一...
    開封第一講書人閱讀 48,970評論 1 284
  • 那天锌杀,我揣著相機與錄音,去河邊找鬼泻仙。 笑死糕再,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的玉转。 我是一名探鬼主播突想,決...
    沈念sama閱讀 38,276評論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼究抓!你這毒婦竟也來了猾担?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 36,927評論 0 259
  • 序言:老撾萬榮一對情侶失蹤刺下,失蹤者是張志新(化名)和其女友劉穎绑嘹,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體橘茉,經(jīng)...
    沈念sama閱讀 43,400評論 1 300
  • 正文 獨居荒郊野嶺守林人離奇死亡工腋,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 35,883評論 2 323
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了畅卓。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片擅腰。...
    茶點故事閱讀 37,997評論 1 333
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖翁潘,靈堂內(nèi)的尸體忽然破棺而出趁冈,到底是詐尸還是另有隱情,我是刑警寧澤唐础,帶...
    沈念sama閱讀 33,646評論 4 322
  • 正文 年R本政府宣布箱歧,位于F島的核電站,受9級特大地震影響一膨,放射性物質(zhì)發(fā)生泄漏呀邢。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 39,213評論 3 307
  • 文/蒙蒙 一豹绪、第九天 我趴在偏房一處隱蔽的房頂上張望价淌。 院中可真熱鬧,春花似錦瞒津、人聲如沸蝉衣。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,204評論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽病毡。三九已至,卻和暖如春屁柏,著一層夾襖步出監(jiān)牢的瞬間啦膜,已是汗流浹背有送。 一陣腳步聲響...
    開封第一講書人閱讀 31,423評論 1 260
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留僧家,地道東北人雀摘。 一個月前我還...
    沈念sama閱讀 45,423評論 2 352
  • 正文 我出身青樓,卻偏偏與公主長得像八拱,于是被迫代替她去往敵國和親阵赠。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 42,722評論 2 345

推薦閱讀更多精彩內(nèi)容