基礎(chǔ)概念
腫瘤突變負(fù)荷(TMB) 是指特定基因組區(qū)域內(nèi)體細(xì)胞非同義突變的個數(shù)斤斧,通常用每兆堿基多少個突變表示(mut/Mb)撒蟀,在早期研究中也直接以突變數(shù)量表示忆肾。
TMB 可以間接反映腫瘤產(chǎn)生新抗原的能力和程度夺衍,預(yù)測多種腫瘤的免疫治療療效。
數(shù)學(xué)表達(dá)為:
:檢測到的非同義突變的細(xì)胞變異個數(shù)
:有效覆蓋區(qū)域
非同義突變:不導(dǎo)致氨基酸改變的核苷酸變異我們稱為同義突變登刺,反之則稱為非同義突變。
對于TMB和DNA損傷修復(fù)的一篇文章中嗡呼,提及到TMB等級劃分
High tumor mutation burden is associated with DNA damage repair gene mutation in breast carcinomas
TMB levels are divided into three groups on FoundationOne CDx reports, including low TMB (1–5 muts/mb), intermediate TMB (6–19 muts/mb), and high TMB (≥ 20 muts/mb).
數(shù)據(jù)準(zhǔn)備
使用從UCSC xena數(shù)據(jù)庫下載的TCGA的相關(guān)數(shù)據(jù)進(jìn)行計算纸俭,以膀胱癌數(shù)據(jù)突變數(shù)據(jù)為例,需要的數(shù)據(jù)如下:
sample chr start end reference alt gene
1: TCGA-2F-A9KO-01 10 101715548 101715548 C T DNMBP
2: TCGA-2F-A9KO-01 10 102822569 102822569 G A KAZALD1
3: TCGA-2F-A9KO-01 10 103826020 103826020 C T HPS6
4: TCGA-2F-A9KO-01 10 104160055 104160055 G C NFKB2
5: TCGA-2F-A9KO-01 10 105200108 105200108 G C PDCD11
6: TCGA-2F-A9KO-01 10 118666167 118666167 C T KIAA1598
effect Amino_Acid_Change DNA_VAF SIFT
1: Silent p.K561K 0.19
2: Missense_Mutation p.D74N 0.10 deleterious(0.01)
3: Silent p.S263S 0.12
4: Silent p.V535V 0.19
5: Missense_Mutation p.D1404H 0.17 deleterious(0)
6: Missense_Mutation p.R484K 0.28 deleterious(0)
PolyPhen
1:
2: probably_damaging(0.999)
3:
4:
5: probably_damaging(0.993)
6: probably_damaging(0.993)
可以看一下都有什么數(shù)據(jù)
> colnames(mut_inf)
[1] "sample" "chr" "start"
[4] "end" "reference" "alt"
[7] "gene" "effect" "Amino_Acid_Change"
[10] "DNA_VAF" "SIFT" "PolyPhen"
計算TMB
TCGA用的是GRCh38參考基因組南窗,長度約35Mb揍很。
需要準(zhǔn)備的數(shù)據(jù)樣子
數(shù)據(jù)來源:UCSC xena
計算樣本的突變數(shù)
mutect.dataframe <- function(x){
cut_id <- x$effect == "Silent" #刪除Silent的行
x <- x[!cut_id,]
somatic_sum <- x %>% group_by(sample) %>% summarise(TCGA_sum = n())
}
variants_per_sample <- mutect.dataframe(mut_inf)
然后計算TMB
TMB_per_sample <- myMut
TMB_per_sample$TMB <- myMut$TCGA_sum %/% 35 #或38
#把TMB值保存到文件郎楼,自己設(shè)定閾值,就可以用高低TMB分組進(jìn)行生存分析
write.csv(TMB_per_sample, "TMB_output.csv", quote = F, row.names = F)
后續(xù)根據(jù)個人的分組窒悔,進(jìn)行相應(yīng)的分析
參考文章
深度解讀腫瘤突變負(fù)荷(TMB)
如何看懂基因檢測報告之腫瘤突變負(fù)荷(TMB)呜袁? - 知乎 (zhihu.com)
腫瘤TMB的計算原理和數(shù)學(xué)模型
腫瘤突變負(fù)荷計算
下載TCGA所有癌癥的maf文件計算TMB | 生信菜鳥團(tuán) (bio-info-trainee.com)