技巧 | 從 GFF 文件提取 CDS 并翻譯成蛋白

Usage:
gffread <input_gff> [-g <genomic_seqs_fasta> | <dir>][-s <seq_info.fsize>] 
 [-o <outfile.gff>] [-t <tname>] [-r [[<strand>]<chr>:]<start>..<end> [-R]]
 [-CTVNJMKQAFGUBHZWTOLE] [-w <exons.fa>] [-x <cds.fa>] [-y <tr_cds.fa>]
 [-i <maxintron>] 
 Filters and/or converts GFF3/GTF2 records.
 <input_gff> is a GFF file, use '-' if the GFF records will be given at stdin
 
 Options:
  -g  full path to a multi-fasta file with the genomic sequences
      for all input mappings, OR a directory with single-fasta files
      (one per genomic sequence, with file names matching sequence names)
  -s  <seq_info.fsize> is a tab-delimited file providing this info
      for each of the mapped sequences:
      <seq-name> <seq-length> <seq-description>
      (useful for -A option with mRNA/EST/protein mappings)
  -i  discard transcripts having an intron larger than <maxintron>
  -r  only show transcripts overlapping coordinate range <start>..<end>
      (on chromosome/contig <chr>, strand <strand> if provided)
  -R  for -r option, discard all transcripts that are not fully 
      contained within the given range
  -U  discard single-exon transcripts
  -C  coding only: discard mRNAs that have no CDS feature
  -F  full GFF attribute preservation (all attributes are shown)
  -G  only parse additional exon attributes from the first exon
      and move them to the mRNA level (useful for GTF input)
  -A  use the description field from <seq_info.fsize> and add it
      as the value for a 'descr' attribute to the GFF record
  
  -O  process also non-transcript GFF records (by default non-transcript
      records are ignored)
  -V  discard any mRNAs with CDS having in-frame stop codons
  -H  for -V option, check and adjust the starting CDS phase
      if the original phase leads to a translation with an 
      in-frame stop codon
  -B  for -V option, single-exon transcripts are also checked on the
      opposite strand
  -N  discard multi-exon mRNAs that have any intron with a non-canonical
      splice site consensus (i.e. not GT-AG, GC-AG or AT-AC)
  -J  discard any mRNAs that either lack initial START codon
      or the terminal STOP codon, or have an in-frame stop codon
      (only print mRNAs with a fulll, valid CDS)
  --no-pseudo: filter out records matching the 'pseudo' keyword
 
  -M/--merge : cluster the input transcripts into loci, collapsing matching
       transcripts (those with the same exact introns and fully contained)
  -d <dupinfo> : for -M option, write collapsing info to file <dupinfo>
  --cluster-only: same as --merge but without collapsing matching transcripts
  -K  for -M option: also collapse shorter, fully contained transcripts
      with fewer introns than the container
  -Q  for -M option, remove the containment restriction:
      (multi-exon transcripts will be collapsed if just their introns match,
      while single-exon transcripts can partially overlap (80%))
 
  --force-exons: make sure that the lowest level GFF features are printed as 
      "exon" features
  -E  expose (warn about) duplicate transcript IDs and other potential 
      problems with the given GFF/GTF records
  -D  decode url encoded characters within attributes
  -Z  merge close exons into a single exon (for intron size<4)
  -w  write a fasta file with spliced exons for each GFF transcript
  -x  write a fasta file with spliced CDS for each GFF transcript
  -W  for -w and -x options, also write for each fasta record the exon
      coordinates projected onto the spliced sequence
  -y  write a protein fasta file with the translation of CDS for each record
  -L  Ensembl GTF to GFF3 conversion (implies -F; should be used with -m)
  -m  <chr_replace> is a reference (genomic) sequence replacement table with
      this format:
      <original_ref_ID> <new_ref_ID>
      GFF records on reference sequences that are not found among the
      <original_ref_ID> entries in this file will be filtered out
  -o  the "filtered" GFF records will be written to <outfile.gff>
      (use -o- for printing to stdout)
  -t  use <trackname> in the second column of each GFF output line
  -T  -o option will output GTF format instead of GFF3
$ conda install gffread
$ gffread test.gff3 -g genome.fa -x cds.fa -y protein.fa

Ref | 根據(jù)基因組 fa 文件和 gff 文件提取 cds 并翻譯成 pep

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市眠蚂,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 216,324評(píng)論 6 498
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件慰丛,死亡現(xiàn)場(chǎng)離奇詭異颤绕,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)蜜自,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,356評(píng)論 3 392
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來卢佣,“玉大人袁辈,你說我怎么就攤上這事≈槠” “怎么了晚缩?”我有些...
    開封第一講書人閱讀 162,328評(píng)論 0 353
  • 文/不壞的土叔 我叫張陵,是天一觀的道長媳危。 經(jīng)常有香客問我荞彼,道長,這世上最難降的妖魔是什么待笑? 我笑而不...
    開封第一講書人閱讀 58,147評(píng)論 1 292
  • 正文 為了忘掉前任鸣皂,我火速辦了婚禮,結(jié)果婚禮上暮蹂,老公的妹妹穿的比我還像新娘寞缝。我一直安慰自己,他們只是感情好仰泻,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,160評(píng)論 6 388
  • 文/花漫 我一把揭開白布荆陆。 她就那樣靜靜地躺著,像睡著了一般集侯。 火紅的嫁衣襯著肌膚如雪被啼。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,115評(píng)論 1 296
  • 那天棠枉,我揣著相機(jī)與錄音浓体,去河邊找鬼。 笑死辈讶,一個(gè)胖子當(dāng)著我的面吹牛命浴,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播贱除,決...
    沈念sama閱讀 40,025評(píng)論 3 417
  • 文/蒼蘭香墨 我猛地睜開眼生闲,長吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼媳溺!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起跪腹,我...
    開封第一講書人閱讀 38,867評(píng)論 0 274
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎飞醉,沒想到半個(gè)月后冲茸,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,307評(píng)論 1 310
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡缅帘,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,528評(píng)論 2 332
  • 正文 我和宋清朗相戀三年轴术,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片钦无。...
    茶點(diǎn)故事閱讀 39,688評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡逗栽,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出失暂,到底是詐尸還是另有隱情彼宠,我是刑警寧澤,帶...
    沈念sama閱讀 35,409評(píng)論 5 343
  • 正文 年R本政府宣布弟塞,位于F島的核電站凭峡,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏决记。R本人自食惡果不足惜摧冀,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,001評(píng)論 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望系宫。 院中可真熱鬧索昂,春花似錦、人聲如沸扩借。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,657評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽潮罪。三九已至框产,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間错洁,已是汗流浹背秉宿。 一陣腳步聲響...
    開封第一講書人閱讀 32,811評(píng)論 1 268
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留屯碴,地道東北人描睦。 一個(gè)月前我還...
    沈念sama閱讀 47,685評(píng)論 2 368
  • 正文 我出身青樓,卻偏偏與公主長得像导而,于是被迫代替她去往敵國和親忱叭。 傳聞我的和親對(duì)象是個(gè)殘疾皇子隔崎,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,573評(píng)論 2 353

推薦閱讀更多精彩內(nèi)容