知識(shí)積累---整合細(xì)胞形態(tài)和空間轉(zhuǎn)錄組學(xué)深入分析腫瘤生態(tài)系統(tǒng)

作者,Evil Genius

大家科研不要把自己逼得太緊垛玻,適當(dāng)放松是為了更好的工作割捅,比如最近很好的悟空,3個(gè)人湊錢買了一份玩一玩帚桩,第一關(guān)都過不去亿驾。

今日參考文獻(xiàn),

雖然作者是中國(guó)人账嚎,但卻是美國(guó)的課題組莫瞬,

我早已工作了,分享了很多的分析方法郭蕉,但是基本不可能有機(jī)會(huì)參與原創(chuàng)性的工作了疼邀,大家基本上常用的軟件,比如Seurat召锈、cellchat等等旁振,都是在美國(guó)人的中國(guó)人開發(fā)的,說明了只要有好的環(huán)境涨岁,國(guó)人的才智簡(jiǎn)直無可匹敵拐袜。

分析目標(biāo),繪制癌細(xì)胞和TME成分梢薪,對(duì)細(xì)胞類型和狀態(tài)進(jìn)行分層蹬铺,并分析細(xì)胞共定位。

知識(shí)背景

  • 基于下一代測(cè)序(NGS)的平臺(tái)秉撇,如Visium甜攀、GeoMx秋泄、Slide-Seq「傲冢基于雜交的方法印衔,如MERFISH、seqFISH和CosMx姥敛〖楸海基于NGS的ST方法覆蓋了整個(gè)轉(zhuǎn)錄組,但不是單細(xì)胞分辨率彤敛,而基于原位雜交的方法提供了優(yōu)越的空間分辨率与帆,但僅限于基因組的一小部分,限制了它們?cè)诨诎l(fā)現(xiàn)的研究中的潛力(不過5000+探針還是可以的)墨榄。
  • 通過結(jié)合空間基因表達(dá)玄糟、組織組織學(xué)和癌癥和TME細(xì)胞的先驗(yàn)知識(shí),系統(tǒng)地分析癌細(xì)胞和TME細(xì)胞袄秩。

METI 分析框架

  • 重點(diǎn)關(guān)注從正常細(xì)胞到癌前細(xì)胞再到惡性細(xì)胞的進(jìn)展阵翎,同時(shí)也檢查每個(gè)組織切片內(nèi)的淋巴細(xì)胞。
  • METI的目標(biāo)是精確識(shí)別各種細(xì)胞類型及其在TME中的各自狀態(tài)之剧。

模塊1郭卫,METI識(shí)別正常細(xì)胞和癌前細(xì)胞.
模塊2,METI識(shí)別腫瘤細(xì)胞富集區(qū)并表征其細(xì)胞狀態(tài)的異質(zhì)性
模塊3, T細(xì)胞的空間定位
模塊4,中識(shí)別其他免疫細(xì)胞背稼,包括中性粒細(xì)胞贰军、B細(xì)胞、漿細(xì)胞和巨噬細(xì)胞蟹肘。
模塊5词疼、成纖維細(xì)胞的分析

模塊一、繪制正常細(xì)胞和癌前細(xì)胞

分析思路:病理學(xué)家標(biāo)注 + 正常細(xì)胞的形態(tài)學(xué)形狀 + 基因表達(dá)數(shù)據(jù)
  • 這種檢測(cè)不能通過流行的空間聚類方法單獨(dú)實(shí)現(xiàn)


模塊二帘腹、癌細(xì)胞結(jié)構(gòu)域和異質(zhì)性的鑒定

大多數(shù)實(shí)體瘤起源于上皮細(xì)胞贰盗,被稱為癌,包括胃癌阳欲、肺癌童太、膀胱癌、乳腺癌胸完、前列腺癌和結(jié)腸癌,而其他一些實(shí)體瘤起源于其他類型的組織翘贮,包括肉瘤和黑色素瘤赊窥。無論其細(xì)胞來源如何,了解惡性細(xì)胞的分子特征和細(xì)胞異質(zhì)性對(duì)于揭示腫瘤生長(zhǎng)狸页、侵襲锨能、轉(zhuǎn)移和治療反應(yīng)的機(jī)制至關(guān)重要扯再。定量生物組織內(nèi)細(xì)胞的空間分布和密度對(duì)于各種應(yīng)用至關(guān)重要,特別是在病理學(xué)和腫瘤學(xué)領(lǐng)域址遇。雖然基因表達(dá)提供了一個(gè)molecular lens熄阻,但相關(guān)的H&E圖像可以用來測(cè)量空間細(xì)胞分布和密度。與模塊1一樣倔约,METI接下來進(jìn)行腫瘤細(xì)胞核分割秃殉,生成三維腫瘤細(xì)胞密度圖,直觀地描繪了癌細(xì)胞的空間分布和密度浸剩。該功能用于傳達(dá)感興趣的細(xì)胞類型的空間分布钾军、密度和模式。

模塊三绢要、T細(xì)胞定位和表型

模塊4吏恭、深入分析其他免疫細(xì)胞,這其中就包括了單細(xì)胞難以捕獲到的中性粒細(xì)胞重罪。

模塊5樱哼、成纖維細(xì)胞的分析

示例代碼在 https://github.com/Flashiness/METI

我們簡(jiǎn)單看一下剿配,注意如果運(yùn)用到自己的課題還是需要認(rèn)真思考的搅幅。

##pip install METIforST
#Note: you need to make sure that the pip is for python3,or you can install METI by
##python3 -m pip install METIforST==0.2

import torch
import csv,re, time
import pickle
import random
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
from scipy import stats
from scipy.sparse import issparse
import scanpy as sc
import matplotlib.colors as clr
import matplotlib.pyplot as plt
import cv2
import TESLA as tesla
from IPython.display import Image
import scipy.sparse
import scanpy as sc
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scanpy import read_10x_h5
import PIL
from PIL import Image as IMAGE
import os
import METI as meti
import tifffile
os.environ['KMP_DUPLICATE_LIB_OK']='True'

讀取數(shù)據(jù)

adata=sc.read_visium("/tutorial/data/Spaceranger/")
spatial=pd.read_csv("/tutorial/data/Spaceranger/tissue_positions_list.csv",sep=",",header=None,na_filter=False,index_col=0)

adata.var_names_make_unique()
adata.var["mt"] = adata.var_names.str.startswith("MT-")
sc.pp.calculate_qc_metrics(adata, qc_vars=["mt"], inplace=True)

plt.rcParams["figure.figsize"] = (8, 8)
sc.pl.spatial(adata, img_key="hires", color=["total_counts", "n_genes_by_counts"], size = 1.5, save = 'UMI_count.png')

轉(zhuǎn)換數(shù)據(jù)

#================== 3. Read in data ==================#
#Read original 10x_h5 data and save it to h5ad
from scanpy import read_10x_h5
adata = read_10x_h5("../tutorial/data/filtered_feature_bc_matrix.h5")
spatial=pd.read_csv("../tutorial/data/tissue_positions_list.csv",sep=",",header=None,na_filter=False,index_col=0) 
adata.obs["x1"]=spatial[1]
adata.obs["x2"]=spatial[2]
adata.obs["x3"]=spatial[3]
adata.obs["x4"]=spatial[4]
adata.obs["x5"]=spatial[5] 
adata.obs["array_x"]=adata.obs["x2"]
adata.obs["array_y"]=adata.obs["x3"]
adata.obs["pixel_x"]=adata.obs["x4"]
adata.obs["pixel_y"]=adata.obs["x5"]
#Select captured samples
adata=adata[adata.obs["x1"]==1]
adata.var_names=[i.upper() for i in list(adata.var_names)]
adata.var["genename"]=adata.var.index.astype("str")
adata.write_h5ad("../tutorial/data/1957495_data.h5ad")

#Read in gene expression and spatial location
counts=sc.read("../tutorial/data/1957495_data.h5ad")
#Read in hitology image
PIL.Image.MAX_IMAGE_PIXELS = None
img = IMAGE.open(r"../tutorial/data/histology.tif") 
img = np.array(img)

#if your image has 4 dimensions, only keep first 3 dims
img=img[...,:3]

resize_factor=1000/np.min(img.shape[0:2])
resize_width=int(img.shape[1]*resize_factor)
resize_height=int(img.shape[0]*resize_factor)
counts.var.index=[i.upper() for i in counts.var.index]
counts.var_names_make_unique()
counts.raw=counts
sc.pp.log1p(counts) # impute on log scale
if issparse(counts.X):counts.X=counts.X.A

###Contour detection

# Detect contour using cv2
cnt=tesla.cv2_detect_contour(img, apertureSize=5,L2gradient = True)

binary=np.zeros((img.shape[0:2]), dtype=np.uint8)
cv2.drawContours(binary, [cnt], -1, (1), thickness=-1)
#Enlarged filter
cnt_enlarged = tesla.scale_contour(cnt, 1.05)
binary_enlarged = np.zeros(img.shape[0:2])
cv2.drawContours(binary_enlarged, [cnt_enlarged], -1, (1), thickness=-1)
img_new = img.copy()
cv2.drawContours(img_new, [cnt], -1, (255), thickness=20)
img_new=cv2.resize(img_new, ((resize_width, resize_height)))
cv2.imwrite('../tutorial/data/cnt_1957495.jpg', img_new)
Image(filename='../tutorial/data/cnt_1957495.jpg')

####Gene expression enhancement
#Set size of superpixel
res=40
# Note, if the numer of superpixels is too large and take too long, you can increase the res to 100
enhanced_exp_adata=tesla.imputation(img=img, raw=counts, cnt=cnt, genes=counts.var.index.tolist(), shape="None", res=res, s=1, k=2, num_nbs=10)
enhanced_exp_adata.write_h5ad("../tutorial/data/enhanced_exp.h5ad")

####Goblet marker gene expression
#================ determine if markers are in ===============#
enhanced_exp_adata=sc.read("..tutorial/data/enhanced_exp.h5ad")
markers = ["MS4A10", "MGAM", "CYP4F2", "XPNPEP2", "SLC5A9", "SLC13A2", "SLC28A1", "MEP1A", "ABCG2", "ACE2"]
for i in range(len(markers)):
    if markers[i] in enhanced_exp_adata.var.index: print("yes")
    else: print(markers[i])
save_dir="..tutorial/data/Goblet/"
if not os.path.exists(save_dir):os.mkdir(save_dir)
#================ Plot gene expression image ===============#
markers = ["MS4A10", "MGAM", "CYP4F2", "XPNPEP2", "SLC5A9", "SLC13A2", "SLC28A1", "MEP1A", "ABCG2", "ACE2"]
for i in range(len(markers)):
    cnt_color = clr.LinearSegmentedColormap.from_list('magma', ["#000003",  "#3b0f6f",  "#8c2980",   "#f66e5b", "#fd9f6c", "#fbfcbf"], N=256)
    g=markers[i]
    enhanced_exp_adata.obs[g]=enhanced_exp_adata.X[:,enhanced_exp_adata.var.index==g]
    fig=sc.pl.scatter(enhanced_exp_adata,alpha=1,x="y",y="x",color=g,color_map=cnt_color,show=False,size=10)
    fig.set_aspect('equal', 'box')
    fig.invert_yaxis()
    plt.gcf().set_dpi(600)
    fig.figure.show()

    plt.savefig(save_dir + str(markers[i]) + ".png", dpi=600)
    plt.close()
#================ Plot meta gene expression image ===============#
enhanced_exp_adata=sc.read("/Users/jjiang6/Desktop/UTH/MDA GRA/Spatial transcriptome/Cell Segmentation/With Jian Hu/S1_54078/TESLA/enhanced_exp.h5ad")
genes =   ["MS4A10", "MGAM", "CYP4F2", "XPNPEP2", "SLC5A9", "SLC13A2", "SLC28A1", "MEP1A", "ABCG2", "ACE2"]
    
sudo_adata = meti.meta_gene_plot(img=img, 
                                binary=binary,
                                sudo_adata=enhanced_exp_adata, 
                                genes=genes, 
                                resize_factor=resize_factor,
                                target_size="small")

cnt_color = clr.LinearSegmentedColormap.from_list('magma', ["#000003",  "#3b0f6f",  "#8c2980",   "#f66e5b", "#fd9f6c", "#fbfcbf"], N=256)
fig=sc.pl.scatter(sudo_adata,alpha=1,x="y",y="x",color='meta',color_map=cnt_color,show=False,size=5)
fig.set_aspect('equal', 'box')
fig.invert_yaxis()
plt.gcf().set_dpi(600)
fig.figure.show()

plt.savefig(save_dir + "Goblet_meta.png", dpi=600)
plt.close()

Region annotation

genes=["MS4A10", "MGAM", "CYP4F2", "XPNPEP2", "SLC5A9", "SLC13A2", "SLC28A1", "MEP1A", "ABCG2", "ACE2"]
genes=list(set([i for i in genes if i in enhanced_exp_adata.var.index ]))
#target_size can be set to "small" or "large".
pred_refined, target_clusters, c_m=meti.annotation(img=img, 
                                                    binary=binary,
                                                    sudo_adata=enhanced_exp_adata, 
                                                    genes=genes, 
                                                    resize_factor=resize_factor,
                                                    num_required=1, 
                                                    target_size="small")
#Plot
ret_img=tesla.visualize_annotation(img=img, 
                              binary=binary, 
                              resize_factor=resize_factor,
                              pred_refined=pred_refined, 
                              target_clusters=target_clusters, 
                              c_m=c_m)

cv2.imwrite(save_dir + 'IME.jpg', ret_img)
Image(filename=save_dir + 'IME.jpg')
#=====================================Convert to spot level============================================#
adata.obs["color"]=extract_color(x_pixel=(np.array(adata.obs["pixel_x"])*resize_factor).astype(np.int64), 
                                 y_pixel=(np.array(adata.obs["pixel_y"])*resize_factor).astype(np.int64), image=ret_img, beta=25)

type = []
for each in adata.obs["color"]:
    if each < adata.obs["color"].quantile(0.2):
        r = "yes"
        type.append(r)
    else:
        r = "no"
        type.append(r)

adata.obs['Goblet_GE'] = type

fig, ax = plt.subplots(figsize=(10, 10))  # Adjust the size as needed
ax.imshow(img)
ax.set_axis_off()
sc.pl.scatter(adata, x='pixel_y', y='pixel_x', color='Goblet_GE', ax=ax, size = 150, title='Goblet GE Spot Annotations')
# Save the figure
plt.savefig('./sample_results/Goblet_spot_GE.png', dpi=300, bbox_inches='tight')

圖像分割Segmentation

plot_dir="/rsrch4/home/genomic_med/jjiang6/Project1/S1_54078/Segmentation/NC_review_Goblet_seg/"
save_dir=plot_dir+"/seg_results"
adata= sc.read("/rsrch4/home/genomic_med/jjiang6/Project1/S1_54078/TESLA/54078_data.h5ad")

img_path = '/rsrch4/home/genomic_med/jjiang6/Project1/S1_54078/1415785-6 Bx2.tif'
img = tiff.imread(img_path)
d0, d1= img.shape[0], img.shape[1]

#=====================================Split into patched=====================================================
patch_size=400
patches=patch_split_for_ST(img=img, patch_size=patch_size, spot_info=adata.obs, x_name="pixel_x", y_name="pixel_y")
patch_info=adata.obs

# save results
pickle.dump(patches, open(plot_dir + 'patches.pkl', 'wb'))
#=================================Image Segmentation===================================
meti.Segment_Patches(patches, save_dir=save_dir,n_clusters=10)

#=================================Get masks=================================#
pred_file_locs=[save_dir+"/patch"+str(j)+"_pred.npy" for j in range(patch_info.shape[0])]
dic_list=meti.get_color_dic(patches, seg_dir=save_dir)
masks_index=meti.Match_Masks(dic_list, num_mask_each=5, mapping_threshold1=30, mapping_threshold2=60)

masks=meti.Extract_Masks(masks_index, pred_file_locs, patch_size)

combined_masks=meti.Combine_Masks(masks, patch_info, d0, d1)

#=================================Plot masks=================================#
plot_dir = '../tutorial/data/seg_results/mask'

for i in range(masks.shape[0]): #Each mask
    print("Plotting mask ", str(i))
    ret=(combined_masks[i]*255)
    cv2.imwrite(plot_dir+'/mask'+str(i)+'.png', ret.astype(np.uint8))

#=================================Choose one mask to detect cells/nucleis=================================#
channel=1
converted_image = combined_masks[1].astype(np.uint8)
ret, labels = cv2.connectedComponents(converted_image)
features=meti.Extract_CC_Features_each_CC(labels)

num_labels = labels.max()
height, width = labels.shape

colors = np.random.randint(0, 255, size=(num_labels + 1, 3), dtype=np.uint8)
colors[0] = [0, 0, 0]
colored_mask = np.zeros((height, width, 3), dtype=np.uint8)
colored_mask = colors[labels]

# save the colored nucleis channel
cv2.imwrite('/rsrch4/home/genomic_med/jjiang6/Project1/S1_54078/Segmentation/NC_review_Goblet_seg/seg_results/goblet.png', colored_mask)
# save nucleis label
np.save('/rsrch4/home/genomic_med/jjiang6/Project1/S1_54078/Segmentation/NC_review_Goblet_seg/seg_results/labels.npy', labels)
# save nucleis features, including, area, length, width
features.to_csv('/rsrch4/home/genomic_med/jjiang6/Project1/S1_54078/Segmentation/NC_review_Goblet_seg/seg_results/features.csv', index=False)

#=================================filter out goblet cells=================================#
plot_dir="../tutorial/data/seg_results/mask"
if not os.path.exists(plot_dir):os.mkdir(plot_dir)

labels=np.load(plot_dir+"labels.npy")

#Filter - different cell type needs to apply different parameter values
features=pd.read_csv(plot_dir+"features.csv", header=0, index_col=0)
features['mm_ratio'] = features['major_axis_length']/features['minor_axis_length']
features_sub=features[(features["area"]>120) &
                      (features["area"]<1500) &
                      (features["solidity"]>0.85) &
                      (features["mm_ratio"]<2)]
index=features_sub.index.tolist()
labels_filtered=labels*np.isin(labels, index)

np.save(plot_dir+"nuclei_filtered.npy", labels_filtered)

num_labels = labels_filtered.max()
height, width = labels_filtered.shape

colors = np.random.randint(0, 255, size=(num_labels + 1, 3), dtype=np.uint8)
colors[0] = [0, 0, 0]
colored_mask = np.zeros((height, width, 3), dtype=np.uint8)
colored_mask = colors[labels_filtered]

cv2.imwrite(plot_dir+'/goblet_filtered.png', colored_mask)
nuclei segmentation

goblet segmentation
#=====================================Convert to spot level============================================#
plot_dir="./tutorial/sample_results/"
img_seg = np.load(plot_dir+'nuclei_filtered_white.npy')

adata.obs["color"]=meti.extract_color(x_pixel=(np.array(adata.obs["pixel_x"])).astype(np.int64), 
                    y_pixel=(np.array(adata.obs["pixel_y"])).astype(np.int64), image=img_seg, beta=49)

type = []
for each in adata.obs["color"]:
    if each > 0:
        r = "yes"
        type.append(r)
    else:
        r = "no"
        type.append(r)

adata.obs['Goblet_seg'] = type

fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(img)
ax.set_axis_off()
sc.pl.scatter(adata, x='pixel_y', y='pixel_x', color='Goblet_seg', ax=ax, size = 150, title='Goblet Segmentation Spot Annotations')
# Save the figure
plt.savefig(plot_dir+'Goblet_spot_seg.png', format='png', dpi=300, bbox_inches='tight')

Integrarion of gene expression result with segmentation result

adata.obs['Goblet_combined'] = np.where((adata.obs['Goblet_seg'] == 'yes') | (adata.obs['Goblet_GE'] == 'yes'), 'yes', 'no')

fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(img)
ax.set_axis_off()
sc.pl.scatter(adata, x='pixel_y', y='pixel_x', color='Goblet_combined', ax=ax, size = 150,title='Goblet Combined Spot Annotations')
# Save the figure
plt.savefig(plot_dir+'Goblet_spot_combined.png', format='png', dpi=300, bbox_inches='tight')
goblet combined result spot level

生活很好惨篱,有你更好

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
禁止轉(zhuǎn)載盏筐,如需轉(zhuǎn)載請(qǐng)通過簡(jiǎn)信或評(píng)論聯(lián)系作者。
  • 序言:七十年代末砸讳,一起剝皮案震驚了整個(gè)濱河市琢融,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌簿寂,老刑警劉巖漾抬,帶你破解...
    沈念sama閱讀 206,013評(píng)論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異常遂,居然都是意外死亡纳令,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,205評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門克胳,熙熙樓的掌柜王于貴愁眉苦臉地迎上來平绩,“玉大人,你說我怎么就攤上這事漠另∧蟠疲” “怎么了?”我有些...
    開封第一講書人閱讀 152,370評(píng)論 0 342
  • 文/不壞的土叔 我叫張陵笆搓,是天一觀的道長(zhǎng)性湿。 經(jīng)常有香客問我纬傲,道長(zhǎng),這世上最難降的妖魔是什么肤频? 我笑而不...
    開封第一講書人閱讀 55,168評(píng)論 1 278
  • 正文 為了忘掉前任叹括,我火速辦了婚禮,結(jié)果婚禮上宵荒,老公的妹妹穿的比我還像新娘汁雷。我一直安慰自己,他們只是感情好骇扇,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,153評(píng)論 5 371
  • 文/花漫 我一把揭開白布摔竿。 她就那樣靜靜地躺著,像睡著了一般少孝。 火紅的嫁衣襯著肌膚如雪继低。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 48,954評(píng)論 1 283
  • 那天稍走,我揣著相機(jī)與錄音袁翁,去河邊找鬼。 笑死婿脸,一個(gè)胖子當(dāng)著我的面吹牛粱胜,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播狐树,決...
    沈念sama閱讀 38,271評(píng)論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼焙压,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了抑钟?” 一聲冷哼從身側(cè)響起涯曲,我...
    開封第一講書人閱讀 36,916評(píng)論 0 259
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎在塔,沒想到半個(gè)月后幻件,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 43,382評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡蛔溃,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,877評(píng)論 2 323
  • 正文 我和宋清朗相戀三年绰沥,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片贺待。...
    茶點(diǎn)故事閱讀 37,989評(píng)論 1 333
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡徽曲,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出麸塞,到底是詐尸還是另有隱情疟位,我是刑警寧澤,帶...
    沈念sama閱讀 33,624評(píng)論 4 322
  • 正文 年R本政府宣布喘垂,位于F島的核電站甜刻,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏正勒。R本人自食惡果不足惜得院,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,209評(píng)論 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望章贞。 院中可真熱鬧祥绞,春花似錦、人聲如沸鸭限。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,199評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽败京。三九已至兜喻,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間赡麦,已是汗流浹背朴皆。 一陣腳步聲響...
    開封第一講書人閱讀 31,418評(píng)論 1 260
  • 我被黑心中介騙來泰國(guó)打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留泛粹,地道東北人遂铡。 一個(gè)月前我還...
    沈念sama閱讀 45,401評(píng)論 2 352
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像晶姊,于是被迫代替她去往敵國(guó)和親扒接。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,700評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容