cell research-20230421:單細胞 RNA 測序揭示了胚胎階段人肺近端-遠端模式的發(fā)育程序

肺是人類的主要呼吸器官箩言,其中近端氣道遠端肺泡分別負責空氣傳導和氣體交換牺弄。然而料饥,在人類肺發(fā)育的胚胎階段蒲犬,近端-遠端模式的調節(jié)在很大程度上是未知的。在這里岸啡,我們使用單細胞 RNA 測序研究了受精后第 4-8 周(卡內基第 12-21 期)人類胚胎的早期肺發(fā)育原叮,并獲得了169,686 個細胞的轉錄組圖譜。我們在第 4 周觀察到肺器官發(fā)生開始時近端和遠端上皮細胞的可識別基因表達模式巡蘸。此外奋隶,我們確定了近端 (例如 THRB 和 EGR3)遠端 (例如 ETV1 和 SOX6) 上皮模式化的新型轉錄調節(jié)因子。進一步解剖揭示了各種基質細胞群悦荒,包括早期胚胎 BDNF+群體唯欣,提供了具有空間特異性的近端-遠端模式生態(tài)位。此外搬味,我們闡明了氣道和血管平滑肌祖細胞在肺發(fā)育早期的細胞命運分叉和成熟境氢。總之身腻,我們的研究擴大了早期胚胎階段人類肺發(fā)育生物學的范圍产还。內在轉錄調節(jié)因子和新的生態(tài)位提供者的發(fā)現加深了對人類肺發(fā)育中上皮近端-遠端模式的理解,為再生醫(yī)學開辟了新的途徑嘀趟。

背景:
“內消呼肝胰脐区,外表感神經∷矗”呼吸系統(tǒng)源自內胚層牛隅,肺臟作為重要的組成炕柔,經歷5個主要階段!
肺在人類妊娠約 4 周時發(fā)育媒佣,是前腸內胚層的腹側生長物匕累,周圍環(huán)繞著中胚層。在形態(tài)學上默伍,發(fā)育計劃經歷五個不同的階段:胚胎(4-7 周)欢嘿、假腺(5-17 周)、小管(16-26 周)也糊、囊狀(26-38 周)和肺泡(36 周-3 歲) 炼蹦。在此過程中,肺內胚層祖細胞分化為近端氣道上皮細胞類型狸剃,例如纖毛細胞掐隐、基底細胞和分泌細胞,以及遠端肺泡細胞類型钞馁。近端-遠端模式的確定對于肺形態(tài)發(fā)生至關重要虑省。在小鼠肺發(fā)育的假腺階段,Sox2 + 和 Sox9 + 細胞分別主要位于近端和遠端上皮僧凰。然而探颈,在人類肺發(fā)育中,近端上皮表達 SOX2 训措,而遠端上皮共表達 SOX2 和 SOX9 膝擂。

  • res1: The major components required for lung development are readily available at the initiation of lung formation
    人類胚胎肺進行了集中采樣,涵蓋胚胎階段和早期假腺階段 圖 1a
    獲得了高質量的 scRNA-seq 圖譜隙弛,其中包含 169,686 個細胞,平均檢測到 3764 個基因和 12,118 個獨特分子標識符 (UMI)
    注釋了六個人胚胎肺細胞簇狞山,包括肺基質細胞全闷、上皮祖細胞、神經嵴祖細胞萍启、內皮祖細胞总珠、原紅細胞和巨噬細胞 圖1b-d
    基質細胞在整個采樣期間所占比例最高,其次是上皮細胞勘纯、神經嵴和內皮細胞(圖1d)
    有趣的是局服,我們觀察到所有六種細胞類型早在第 4 周(CS12)就出現了,揭示了一種易于組裝的機制驳遵,并表明肺器官發(fā)生是通過復雜的細胞串擾啟動的 圖1e

    a scRNA-seq 實驗設計的示意圖概述淫奔,重點關注人類肺部發(fā)育的胚胎和假腺體階段。 b t-SNE 投影可視化 169,686 個人類胚胎肺細胞堤结,分為六種主要細胞類型唆迁。 c 點圖顯示前 2 個細胞類型標記表達鸭丛。每個點的大小和顏色分別代表每種細胞類型中指定基因的表達百分比和平均表達量。 d 餅圖顯示六種主要細胞類型的比例唐责。 e t-SNE 布局繪制了表示為胚胎周 (wk) 的每個時間點的單細胞分布圖鳞溉。

  • res2: 轉錄因子調節(jié)上皮細胞的近遠端模式
    上皮細胞一直是六種主要肺細胞類型中的主要研究焦點鼠哥。對上皮細胞簇(基質細胞的第二大細胞簇(17,860 個細胞))進行了深入分析熟菲。
    我們將我們的數據集(最早的時間點)與從第 11 周到成人的公開數據集進行了整合。第 4-8 周是一個分支點朴恳,大多數近端祖細胞(例如基底細胞和纖毛細胞)和遠端祖細胞(例如肺泡 1 型和 2 型細胞(AT1 和 AT2))軌跡已經出現抄罕。
    使用單細胞調控網絡推理和聚類 (SCENIC) 計算第 4-8 周期間的 TF 基因(調節(jié)子)活性。接下來菜皂,使用 Waddington-OT20 (WOT) 通過計算每個相鄰時間點之間的細胞間相似性來推斷近端和遠端細胞命運的評分贞绵。最后,根據每個時間點的 WOT 軌跡得分獲得了調節(jié)子活動的加權和恍飘。我們的研究強調了第 4-8 周期間近端-遠端模式形成的分子特征榨崩,遠遠早于小管階段遠端上皮分化的第一個形態(tài)學標志。
    上皮細胞由 5 個群體組成章母,包括高度表達已知近端/遠端標記物的亞型 SOX2 (EPI_SOX2hi/ETV5lo) 和 SOX9/ETV5 (EPI_SOX9hi/ETV5hi)
    RNA 速度分析29表明 EPI_SOX2hi/ETV5lo 和 EPI_SOX9hi/ETV5hi群體源自增殖亞型 EPI_DTL+ 和 EPI_TOP2A+母蛛,表明肺上皮祖細胞是預期近端/遠端上皮的來源
    事實上,在 EPI_SOX2hi/ETV5lo 和 EPI_SOX9hi/ETV5hi 中觀察到可辨別的近端-遠端表達模式第 4 周的細胞(圖 2e乳怎、f)
    SOX2 和 SOX9 在兩個群體中共表達彩郊,直到自第6周起 EPI_SOX2hi/ETV5lo 細胞中遠端因子大幅下調(圖 2e ,f)蚪缀,表明近端規(guī)范在第 6 周左右開始秫逝。一致地,SOX2 的轉錄活性在第 6 周激增(圖2c)询枚。

    圖 2:TF 調節(jié)早期上皮近端-遠端模式. a UMAP 布局顯示了本研究中的人類上皮 scRNA-seq 數據集(按樣本采集時間點著色)和已發(fā)布的數據集9违帆、13(灰色)。上部(綠色箭頭)和下部(洋紅色箭頭)軌跡分別代表近端和遠端上皮譜系金蜀。 b TF-基因調節(jié)子的圖示刷后,由 SCENIC 推斷。 c 熱圖顯示近端(綠色)和遠端(洋紅色)分支中調節(jié)子活性的時間變化渊抄。左側的條形圖代表每個 TF 的標準化富集分數 (NES)尝胆。紅色標記的基因是本研究中新發(fā)現的 TF。 d 近端特異性 THRB 和 EGR3(上圖)和遠端特異性 ETV1 的 TF 活性(綠色)和表達(紅色) 和 SOX6(底部)在第 4-8 周期間將在 UMAP 上進行預測护桦。 SCENIC生成的TF活性以AUC分數表示含衔,反映了TF與其目標基因的共表達強度。 e 小提琴圖顯示 SOX2、NFIB抱慌、GRHL1逊桦、SOX9 的表達、EPI_SOX2hi/ETV5lo 和 EPI_SOX9hi/ETV5 中的 ETV5 和 GATA6第 4-8 周的 hi 細胞抑进。 f 近端-遠端模式和標記基因表達的插圖强经。

  • res3 基質細胞有助于上皮近端-遠端模式的多樣化微環(huán)境
    基質細胞簇是第 4-8 周肺細胞類型中最大的群體(圖1 D)這些基質細胞如何影響胚胎階段的人肺上皮發(fā)育。
    根據基質細胞的分子特征鑒定了 7 種基質細胞亞型寺渗,包括5 種基質亞型2 種平滑肌細胞 (SMC) 亞型(即氣道 SMC (ASMC) 和血管 SMC (VSMC))
    由于缺乏單細胞研究匿情,早期基質群體的異質性以前被低估了
    為了進一步解析這些基質細胞的空間特性信殊,特別是它們與上皮的接近程度炬称,我們通過 10× Visium 技術對 6 周的肺組織切片進行了空間轉錄組學分析. 上皮亞型 EPI_SOX2hi/ETV5lo 和 EPI_SOX9hi/ETV5hi 及其分子標志物分別在近端和遠端上皮中的分布(圖 3 g)
    ASMC 分布在上皮周圍,而 VSMC 分散涡拘,沒有任何典型模式玲躯。smiFISH 分別用標記物 COL9A2/TCF21 和 MYH11/LIMS2 驗證了 + 和 ASMC 的空間位置(圖 3h)。值得注意的是鳄乏,LIMS2 是本研究中新發(fā)現的 ASMC 標志物跷车。這些結果證明了基質亞型分布的特異性及其在胚胎肺器官發(fā)生過程中作為生態(tài)位提供者的不同作用

    圖 3:多種基質細胞類型表現出近端-遠端空間異質性橱野。

我們在主要肺細胞類型之間進行了配體-受體相互作用分析
基質細胞和內皮細胞與上皮細胞的連通性最高,反映了協調氣道分支形態(tài)發(fā)生的基質衍生微環(huán)境朽缴。
基質亞型對上皮生態(tài)位的貢獻。有趣的是水援,我們觀察到 BDNF+ 基質亞型僅由 7.5% 的基質細胞組成密强,負責> 33% 的基質衍生的上皮受體配體 圖4a
有趣的是,BDNF+ 基質亞型出現在第 4 周蜗元,并隨著肺發(fā)育逐漸表現出細胞比例降低,這種細胞類型的特征基因或渤,包括 BDNF 和 FGF10,在器官發(fā)生過程中也被下調.突出了這種 BDNF + 細胞群在早期胚胎階段的獨特作用奕扣。配體-受體相互作用分析進一步闡明劳坑,BDNF+ 基質亞型主要解釋配體的表達,包括 BDNF成畦、FGF9/10、WNT2/2B涝开、LAMA5 和 NMU循帐,其受體是上皮顯性的,表明高度特異性的 BDNF+ 基質-上皮通訊
我們推斷 BNDF+ 細胞衍生的配體與上皮細胞上的受體相互作用

圖 4:+ 基質細胞為早期肺上皮發(fā)育提供信號舀武。
  • res 4 基質細胞來源的 SMC 命運分叉的特征
    基質細胞來源的 VSMC 和 ASMC 對于調節(jié)肺功能至關重要拄养。配體-受體相互作用分析表明,VSMC 和 ASMC 共同貢獻了超過 30% 的基質-上皮細胞串擾,表明它們在肺上皮發(fā)育中起關鍵作用
    編碼 VSMC 和 ASMC 的發(fā)育起源和細胞規(guī)格的程序尚不清楚瘪匿。因此跛梗,我們探討了 SMC 的發(fā)育程序及其在上皮發(fā)育中的作用。
    跨時間點(第 4-6 周)的單細胞譜分別顯示在 UMAP 中棋弥,ASMC 和 VSMC 的軌跡評分分別用藍色和綠色表示
    有趣的是核偿,WOT 推斷一些基質細胞的細胞命運在第 4-5 周已經偏向于 ASMC 或 VSMC,早于從解剖學上觀察到 ASMC(第 5 周)和 VSMC(第 7 周)的階段
    選擇軌跡評分> 0.0001 的細胞作為 SMC 譜系顽染。力導向布局顯示 ASMC 和 VSMC 發(fā)展明顯分叉(圖 5b)漾岳。通過沿 Palantir偽時間排列單元格(5c),我們發(fā)現間充質細胞的核心 TFs粉寞,例如 MEIS2尼荆、SHOX2、TWIST1唧垦,隨著兩種類型的 SMC 的發(fā)育而逐漸下調捅儒,而真正的 SMC 標志物 ACTA2 和 TAGLN 在 ASMC 和 VSMC 群體中表達并逐漸上調。已報道的 VSMC 和 ASMC 標志物 MEF2C 和 MYH11 的表達水平沿其相應的軌跡特異性上調振亮。
    我們確定了經典調節(jié)因子巧还,分別用于 VSMC 的 MEF2C 和用于 ASMC 的 ZEB1,驗證了該工作流程的穩(wěn)健性
    發(fā)現了用于 SMC 開發(fā)的新型 TFs双炕,即用于 VSMC 的 EBF1 和用于 ASMC 的 FOXF1
    ......【討論了很多基因】
    圖 5:ASMC 和 VSMC 的發(fā)育軌跡推斷

學習一下方法:

scRNA-seq analysis

  • Processing of sequencing files
    The FASTQ files of single-cell libraries generated from Illumina NovaSeq system underwent adaptor index removal by Trim Galore (0.5.0). The clean FASTQ files were aligned to the Hg38 and Mm10 genomes with human and mouse gene annotation based on Gencode v35 and vM21 versions, respectively, by STARsolo function of STAR (2.7.6a). For details on the quality of reads, please see Supplementary information, Table S9.

  • Cell filtering, clustering, and visualization
    Low-quality cells were filtered out by the number of UMIs and total counts on each sample. We used Scrublet(1.0) to predict and exclude potential multiplets. To minimize batch effects, we defined the major cell clusters for each sample separately. Briefly, we applied Scanpy (1.7.2)to reduce the dimensionality of cells by PCA and perform clustering and visualization by Leiden and UMAP algorithms. Cell clusters were assigned to known lung cell types based on cell type-specific markers. See Supplementary information, Table S9 for the details on data quality control.
    For the visualization of all scRNA-seq data, we first identified the highly variable TFs (scanpy.pp.highly_variable_genes) and differentially expressed genes (DEGs) (P value < 0.001, Wilcoxon rank-sum test) among major cell types. These TFs and DEGs (1144 genes) were used for computing PCA. We next applied FFT-accelerated Interpolation-based t-SNE73,74 (FIt-SNE) algorithm to display the layout in two dimensions using the top 10 principal components.

  • Identification of the major cell type markers
    All data were normalized using functions scanpy.pp.normalize and scanpy.pp.log1p. DEGs of each major cell type were calculated based on the normalized data (P value < 0.01, Wilcoxon rank-sum test, log fold change ≥ 0.25). DEGs were listed in Supplementary information, Table S1.

  • Clustering and defining cell subtypes
    Top highly variable genes (HVGs) of each sample were selected and merged. After PCA-based dimensionality reduction, we used harmony to correct batch effects based on top 50 PCs via harmony.run_harmony (max_iter_harmony?=?15, max_iter_kmeans?=?10) implemented by Python package harmonypy (0.0.6). Cell clusters were identified using the Leiden algorithm (resolution?=?0.5, Scanpy) based on harmony space. Genes with P value < 0.01 (Wilcoxon rank-sum test) and gene log fold change ≥ 0.25 for each cluster were selected as DEGs. Clusters sharing top DEGs (n?=?20) were merged before being classified as cell subtypes. DEGs of cell subtypes can be found in Supplementary information, Table S2.

  • Trajectory inference for lung epithelial cell and SMC development
    To map the developmental trajectories of lung epithelial cells, we integrated and analyzed the dataset obtained in this study and the two datasets from 10× Genomics platform: Miller et al.9 (ArrayExpress: E-MTAB-8221) of 11.5 weeks, 15.0 weeks, 18.0 weeks, 21.0 weeks and Travaglini et al.13 (EGA: EGAS00001004344) of adult lung. The union of TFs within the top 5000 HVGs and top 100 HVGs per dataset (643 genes) were selected for analysis. Next, we applied monocle3 to pre-process data, reduce dimensionality, and visualize trajectory. To discern proximal and distal epithelium lineages, as well as VSMC and ASMC, we computed developmental trajectories utilizing WOT (1.0.8.post2),20 an optimal transport-based approach to infer ancestor–descendant relationships between cells across adjacent time points of development. We obtained the cell trajectory scores via tmap_model.ancestors and tmap_model.trajectories implemented in the Python package WOT.
    For VSMC and ASMC trajectory inference, the cells of weeks 4–5 from SC_Early with trajectory scores > 0.0001 for VSMC and ASMC were considered as SMC progenitors. The predicted progenitors combined with SMCs were selected to perform trajectory analysis again using Python package harmonyTS (0.1.4).77 The developmental pseudotime and branch probability of VSMC and ASMC were obtained via Python package Palantir (1.0.0).61 Then, we smoothed the gene expression via R package gam (1.20.1). The heatmaps illustrating the gene expression tendency along the developmental trajectory of ASMC and VSMC were generated by R package ComplexHeatmap (2.14.0) (Fig. 5c). To observe the bias of cell fate at weeks 4, 5, and 6, we estimated the cell fate probability via tmap_model.fates implemented in Python package WOT.

  • TF activity inference
    To discover the transcriptional regulators of lung epithelial proximal–distal patterning, we applied pySCENIC (0.11.0) algorithm to identify significant regulons (NES > 1). We then calculated the TF activity based on gene expression levels of each regulon. Weighted sums of TF activities were calculated based on WOT trajectory scores at each time point. The motifs listed in this study were validated by https://jaspar.genereg.net. For details on the TF list, please see Supplementary information, Tables S3 and S7.

  • RNA velocity analysis
    We applied the scVelo (0.2.3) package to calculate the RNA velocity of epithelial cells at weeks 4, 6 and 8. For each time point, the top 10 PCs of top 3000 HVGs were used as input. For details of these processes, please see the scVelo pipeline (https://scvelo.readthedocs.io/index.html).

  • Comparison of TFs between human and mouse epithelia
    We collected the mouse lung epithelial single-cell data from E12.0 to E14.0 with an interval of 0.5 days. Low-quality cells were filtered out by the number of detected genes (< 1800 & > 11,000) and total counts (counts > 100,000). We used Scrublet to predict and exclude potential doublet cells (score > 0.4). Clustering and visualization were implemented by functions scanpy.tl.leiden and scanpy.tl.umap, respectively. The Nkx2-1 (the core TF for lung epithelium development) and Cdh1 (a universal marker for epithelial cells) positive populations were selected as the mouse lung epithelial cells. Sox2/Sox21/Klf5- and Sox9/Gata6/Etv5-expressing cells were annotated as proximal and distal epithelial cells, respectively.
    Human–mouse orthologous genes were used for comparison (Human and Mouse Homologs from MGI database, https://www.informatics.jax.org/homology.shtml). We calculated the differentially expressed TFs in human and mouse (P value < 0.01, t-test), respectively. The TFs were divided into 5 categories: proximal shared, distal shared, human-specific, mouse-specific and human–mouse inverse. The TF list can be found in Supplementary information, Table S5.

  • Comparison of human and mouse stromal cells
    To compare mesenchymal lineages between human and mouse, we integrated and analyzed stromal cells from this study and the Goodwin et al.47 (GEO: GSE153069) mouse dataset from the 10× Genomics platform. Orthologous genes in human and mouse were extracted for comparison. Then, we calculated species-specific and cell type-specific DEGs across human and mouse stromal cell types at 6–7 weeks and E11.5 (P value < 0.01, Wilcoxon rank-sum test). These DEG sets included ‘Common markers for stromal cells’, ‘Shared DEGs’, ‘Human SC_BDNF+ specific’, ‘Mouse mesothelium-specific’ and ‘Mouse sub-meso-specific’. For details on DEGs, please see Supplementary information, Table S10.

  • Ligand–receptor interaction analysis
    We integrated the ligand–receptor databases, cellphoneDB and intact (https://www.ebi.ac.uk/intact). The product of the expression percentage (nUMI > 0) of a given ligand and its receptor from the corresponding provider and recipient cells was calculated as the ligand–receptor score. To calculate the significance of the interaction for each ligand–receptor pair, cell type labels were permuted 1000 times to generate the background distribution of ligand–receptor scores (standardized to mean of 0 and standard deviation of 1). P value < 0.001 (U-test) was considered significant. For details on the ligand–receptor list, please see Supplementary information, Table S6.

Spatial transcriptomic analysis

  • Processing of sequencing files
    The FASTQ files of the spatial transcriptomic library was generated by MGISEQ2000. The FASTQ files were aligned to the hg38 genome with human gene annotation based on Gencode v32 using spaceranger (2.0.0). The serial number of the Visum slide is V11T16-101, the slide file can be downloaded from https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/using/slidefile-download. For the details of data quality, please see Supplementary information, Table S9.

  • Basic analysis and visualization of the Visium data
    Low-quality spots were filtered out if the number of detected genes < 2000. The spatial data were normalized via functions scanpy.pp.normalize and scanpy.pp.log1p. Spatial visualization was performed via function scanpy.pl.spatial.

  • Mapping single-cell data to spatial transcriptomic data
    We used Tangram35 (1.0.3) to map the annotated scRNA-seq data to the spatial spots. To match these two omics, we selected the 6-week data for mapping, using unnormalized UMI counts as input. For the spatial data, we calculated the Moran’I (I, a measure of spatial autocorrelation) for each gene. Genes with absolute I greater than 0.05 were selected as spatially variable genes (SVGs), as calculated by squipy.gr.spatial_autocorr function of Python package squidpy (1.2.3). A total of 2450 genes of SVGs and HVGs (from single-cell data) were used for mapping, resulting in a probability matrix of the assignment of each cell to all spots. To further access the proportion of cell types in each spot, we summed the probability of each single-cell-annotated cell type. For the details of mapping probability, please see Supplementary information, Table S11.

  • The adjacent score for stromal cells and epithelial cells
    We first identified spots surrounding the proximal or distal epithelium region. These spots, as well as those in the epithelial region, were defined as proximal- or distal-associated spots, respectively. To reduce the integration noise between single-cell and spatial data, cell types with a proportion less than 0.4 were excluded in each selected spot. The adjacent score of each cell type to the epithelium was calculated by summing their proportions in proximal- or distal-associated spots. The scores were displayed by Sankey diagram via sankeyNetwork function of R package networkD3 (0.4). The information can be found in Supplementary information, Table S11.

  • Evaluating the score of cellular interactions in Visium slides
    We first assigned each cell to a spot based on the maximum mapping probability from Tangram, defined as a recipient cell (expressing receptors), surrounded by provider cells (expressing ligands) in the neighboring spots. Their ligand–receptor scores and P values were calculated as described in the Ligand–receptor interaction analysis section. The ligand–receptor score between distal epithelium and SC_BDNF+ were shown in Supplementary information, Fig. S7c.

?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末狞悲,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子妇斤,更是在濱河造成了極大的恐慌摇锋,老刑警劉巖,帶你破解...
    沈念sama閱讀 216,372評論 6 498
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件站超,死亡現場離奇詭異荸恕,居然都是意外死亡,警方通過查閱死者的電腦和手機死相,發(fā)現死者居然都...
    沈念sama閱讀 92,368評論 3 392
  • 文/潘曉璐 我一進店門融求,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人算撮,你說我怎么就攤上這事生宛。” “怎么了肮柜?”我有些...
    開封第一講書人閱讀 162,415評論 0 353
  • 文/不壞的土叔 我叫張陵陷舅,是天一觀的道長。 經常有香客問我审洞,道長莱睁,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 58,157評論 1 292
  • 正文 為了忘掉前任,我火速辦了婚禮仰剿,結果婚禮上创淡,老公的妹妹穿的比我還像新娘。我一直安慰自己南吮,他們只是感情好琳彩,可當我...
    茶點故事閱讀 67,171評論 6 388
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著旨袒,像睡著了一般汁针。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上砚尽,一...
    開封第一講書人閱讀 51,125評論 1 297
  • 那天施无,我揣著相機與錄音,去河邊找鬼必孤。 笑死猾骡,一個胖子當著我的面吹牛,可吹牛的內容都是我干的敷搪。 我是一名探鬼主播兴想,決...
    沈念sama閱讀 40,028評論 3 417
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼赡勘!你這毒婦竟也來了嫂便?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 38,887評論 0 274
  • 序言:老撾萬榮一對情侶失蹤闸与,失蹤者是張志新(化名)和其女友劉穎毙替,沒想到半個月后,有當地人在樹林里發(fā)現了一具尸體践樱,經...
    沈念sama閱讀 45,310評論 1 310
  • 正文 獨居荒郊野嶺守林人離奇死亡厂画,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 37,533評論 2 332
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現自己被綠了拷邢。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片袱院。...
    茶點故事閱讀 39,690評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖瞭稼,靈堂內的尸體忽然破棺而出忽洛,到底是詐尸還是另有隱情,我是刑警寧澤环肘,帶...
    沈念sama閱讀 35,411評論 5 343
  • 正文 年R本政府宣布欲虚,位于F島的核電站,受9級特大地震影響廷臼,放射性物質發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 41,004評論 3 325
  • 文/蒙蒙 一荠商、第九天 我趴在偏房一處隱蔽的房頂上張望寂恬。 院中可真熱鬧,春花似錦莱没、人聲如沸初肉。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,659評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽牙咏。三九已至,卻和暖如春嘹裂,著一層夾襖步出監(jiān)牢的瞬間妄壶,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 32,812評論 1 268
  • 我被黑心中介騙來泰國打工寄狼, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留丁寄,地道東北人。 一個月前我還...
    沈念sama閱讀 47,693評論 2 368
  • 正文 我出身青樓泊愧,卻偏偏與公主長得像伊磺,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子删咱,可洞房花燭夜當晚...
    茶點故事閱讀 44,577評論 2 353

推薦閱讀更多精彩內容