作者,Evil Genius
今天我們分享一個(gè)簡答的內(nèi)容褒繁,空間細(xì)胞聚類與配受體共現(xiàn)亦鳞。
今年的空間課程給了大家一個(gè)方法,當(dāng)然了棒坏,都可以用燕差,也都有高分文章引用,我們今天更新一個(gè)方法俊抵,結(jié)果如下:
老粉應(yīng)該有印象分享的是哪篇文章谁不。
針對bin模式的Stereo-seq或者標(biāo)準(zhǔn)模式HD分析,不做圖像分割的情況下徽诲, 合并后的superspot都跟visium分析差不多刹帕,需要和單細(xì)胞數(shù)據(jù)一起進(jìn)行解卷積。當(dāng)然了谎替,這就會(huì)有課程上講到的分析偷溺,分子聚類、細(xì)胞聚類钱贯。
解卷積的方法么挫掏,一般都是cell2location、RCTD居多秩命,當(dāng)然了尉共,像CellTrek褒傅、CellScope等方法也都有人引用,分析完拿到空間細(xì)胞矩陣袄友,針對這個(gè)矩陣殿托,也會(huì)有很多的個(gè)性化分析。
我們更新一下這個(gè)空間細(xì)胞聚類的方法剧蚣。分析細(xì)胞類型的空間共現(xiàn)支竹。
簡單的例子
代碼示例
# Loading required packages
library(ISCHIA)
library(robustbase)
library(data.table)
library(ggplot2)
library(Seurat)
library(dplyr)
library(factoextra)
library(cluster)
library(showtext)
library(gridExtra)
library(pdftools)
# Set random seed for reproducibility
set.seed(123)
# Load data
pdac <- readRDS("/path/to/pdac_mets_rctd.rds")
assay_matrix <- pdac[["rctd_tier1"]]@data
norm_weights <- as.data.frame(t(assay_matrix))
# Elbow Method
k.values <- 1:20
wss_values <- sapply(k.values, function(k) kmeans(norm_weights, k, nstart = 10)$tot.withinss)
pdf("1_elbow_plot.pdf")
plot(k.values, wss_values, type = "b", pch = 19, frame = FALSE,
xlab = "Number of clusters K", ylab = "Total within-cluster sum of squares",
main = "Elbow Method for Optimal K")
dev.off()
# Gap Statistic
gap_stat <- function(k) {
km.res <- kmeans(norm_weights, k, nstart = 10)
if (k == 1) return(NA)
obs_disp <- sum(km.res$withinss)
reference_disp <- mean(replicate(10, {
km.null <- kmeans(matrix(rnorm(nrow(norm_weights) * ncol(norm_weights)),
ncol = ncol(norm_weights)), k, nstart = 10)
sum(km.null$withinss)
}))
log(reference_disp) - log(obs_disp)
}
gap_stat_values <- sapply(k.values, gap_stat)
pdf("2_gap_statistic_plot.pdf")
plot(k.values, gap_stat_values, type = "b", pch = 19, frame = FALSE,
xlab = "Number of Clusters (K)", ylab = "Gap Statistic",
main = "Gap Statistic: Determining Optimal K")
dev.off()
# Calinski-Harabasz Index
calinski_harabasz_index <- function(data, labels) {
num_clusters <- length(unique(labels))
num_points <- nrow(data)
centroids <- tapply(data, labels, FUN = colMeans)
between_disp <- sum(sapply(1:num_clusters, function(i) {
cluster_points <- data[labels == i, ]
nrow(cluster_points) * sum((colMeans(cluster_points) - centroids[i, ]) ^ 2)
}))
within_disp <- sum(sapply(1:num_clusters, function(i) {
cluster_points <- data[labels == i, ]
sum((cluster_points - centroids[i, ]) ^ 2)
}))
(between_disp / (num_clusters - 1)) / (within_disp / (num_points - num_clusters))
}
ch_values <- sapply(k.values, function(k) {
km.res <- kmeans(norm_weights, k, nstart = 10)
calinski_harabasz_index(norm_weights, km.res$cluster)
})
pdf("3_calinski_harabasz_plot.pdf")
plot(k.values, ch_values, type = "b", pch = 19, frame = FALSE,
xlab = "Number of Clusters (K)", ylab = "Calinski-Harabasz Index",
main = "Calinski-Harabasz Index: Determining Optimal K")
dev.off()
# ISCHIA Analysis
pdf("4_composition_cluster_k_plot.pdf")
Composition.cluster.k(norm_weights, 20)
dev.off()
pdac <- Composition.cluster(pdac, norm_weights, 12)
pdac$cc_12 <- pdac$CompositionCluster_CC
# Spatial Dimension Plot
image_names <- c("IU_PDA_T1", "IU_PDA_T2", "IU_PDA_HM2", "IU_PDA_HM2_2", "IU_PDA_NP2",
"IU_PDA_T3", "IU_PDA_HM3", "IU_PDA_T4", "IU_PDA_HM4", "IU_PDA_HM5",
"IU_PDA_T6", "IU_PDA_HM6", "IU_PDA_LNM6", "IU_PDA_LNM7", "IU_PDA_T8",
"IU_PDA_HM8", "IU_PDA_LNM8", "IU_PDA_T9", "IU_PDA_HM9", "IU_PDA_T10",
"IU_PDA_HM10", "IU_PDA_LNM10", "IU_PDA_NP10", "IU_PDA_T11", "IU_PDA_HM11",
"IU_PDA_NP11", "IU_PDA_T12", "IU_PDA_HM12", "IU_PDA_LNM12", "IU_PDA_HM13")
paletteMartin <- c('#e6194b', '#3cb44b', '#ffe119', '#4363d8', '#f58231', '#911eb4',
'#46f0f0', '#f032e6', '#bcf60c', '#fabebe', '#008080', '#e6beff')
all_ccs <- unique(pdac$CompositionCluster_CC)
color_mapping <- setNames(paletteMartin[1:length(all_ccs)], all_ccs)
pdf("5_spatial_plots_K12.pdf", width = 10, height = 7)
for (image_name in image_names) {
plot <- SpatialDimPlot(pdac, group.by = "CompositionCluster_CC", images = image_name) +
scale_fill_manual(values = color_mapping) +
theme_minimal() +
ggtitle(image_name)
print(plot)
}
dev.off()
# Enriched Cell Types
save_cc_plot <- function(cc) {
plot <- Composition_cluster_enrichedCelltypes(pdac, cc, as.matrix(norm_weights))
pdf_name <- paste0(cc, ".pdf")
pdf(file = pdf_name)
print(plot)
dev.off()
}
ccs <- paste0("CC", 1:12)
for (cc in ccs) {
save_cc_plot(cc)
}
pdf_files <- paste0("CC", 1:12, ".pdf")
pdf_combine(pdf_files, output = "6_enrichedCelltypes_CC_12.pdf")
# UMAP
pdac.umap <- Composition_cluster_umap(pdac, norm_weights)
pdf("7_umap_pie_chart.pdf")
print(pdac.umap$umap.deconv.gg)
dev.off()
# Add UMAP to Seurat object
emb.umap <- pdac.umap$umap.table
emb.umap$CompositionCluster_CC <- NULL
emb.umap$Slide <- NULL
emb.umap <- as.matrix(emb.umap)
colnames(emb.umap) <- c("UMAP1", "UMAP2")
pdac[['umap.ischia12']] <- CreateDimReducObject(embeddings = emb.umap, key = 'umap.ischia12_', assay = 'rctd_tier1')
pdf("8_seurat_ischia_umap_12.pdf")
DimPlot(pdac, reduction = "umap.ischia12", label = FALSE, group.by="cc_12")
dev.off()
# Bar plots
pdf("9_barplot_SampVsorig_12.pdf", height=12, width=20)
dittoBarPlot(pdac, "orig.ident", group.by = "cc_12")
dev.off()
pdf("10_barplot_origVsSamp_12.pdf", height=10, width=20)
dittoBarPlot(pdac, "cc_12", group.by = "orig.ident")
dev.off()
# Cell type co-occurrence
CC4.celltype.cooccur <- spatial.celltype.cooccurence(spatial.object=pdac, deconv.prob.mat=norm_weights,
COI="CC4", prob.th= 0.05,
Condition=unique(pdac$orig.ident))
pdf("11_celltype_cooccurrence_CC4.pdf")
plot.celltype.cooccurence(CC4.celltype.cooccur)
dev.off()
最后畫一畫這個(gè)圖
### This script performs the wilcoxon rank sum test and hierarchical clustering on the RCTD tier data to identify the significant abundant cell types between the clusters.
#### Load necessary packages
library(Seurat)
library(compositions)
library(tidyverse)
library(clustree)
library(patchwork)
library(uwot)
library(scran)
library(cluster)
library(ggrastr)
library(cowplot)
# library(conflicted) # to be loaded in case of a conflict arises.
config <- config::get()
# source(here::here("pdac_nac", "visualization", "eda.R"))
### Load the seurat object and get the proportions data
so <- readRDS(here::here(config$data_processed, "06-pdac_CC10_msig.rds"))
# Join with metadata if needed
metadata <- so@meta.data %>%
select(orig.ident, patient_id, neoadjuvant_chemo, CompositionCluster_CC) %>%
rownames_to_column("row_id")
# Get the proportions data
rctd_tier2 <- t(so@assays$rctd_tier2@data)
# Ensure the data is in the right format
rownames(rctd_tier2) <- make.unique(rownames(rctd_tier2))
# Log transformation of rctd_tier1
log_comps <- log10(rctd_tier2)
## Perform the summary statistics
We perform the summary statistics for the RCTD tier data. We perform hierarchical clustering and do the wilcoxon rank sum test to identify the differentially abundant cell types between the clusters.
#### Prepare the data for the summary statistics
# Prepare data for summary statistics
cluster_summary_pat <- rctd_tier2 %>%
as.data.frame() %>%
rownames_to_column("row_id") %>%
left_join(metadata, by = "row_id") %>% # Join with meta_data using row_id as the key
pivot_longer(-c(row_id, orig.ident, patient_id, neoadjuvant_chemo, CompositionCluster_CC), values_to = "ct_prop", names_to = "cell_type") %>%
group_by(orig.ident, patient_id, neoadjuvant_chemo, CompositionCluster_CC, cell_type) %>%
summarize(median_ct_prop = median(ct_prop, na.rm = TRUE))
# Aggregate data for median ct prop
cluster_summary <- cluster_summary_pat %>%
ungroup() %>%
group_by(CompositionCluster_CC, cell_type) %>%
summarize(patient_median_ct_prop = median(median_ct_prop, na.rm = TRUE))
# Prepare matrix for hierarchical clustering
cluster_summary_mat <- cluster_summary %>%
pivot_wider(values_from = patient_median_ct_prop, names_from = cell_type, values_fill = list(patient_median_ct_prop = 0)) %>%
column_to_rownames("CompositionCluster_CC") %>%
as.matrix()
# conflicts_prefer(stats::"dist") # resolve conflicts between %*% functions
# Perform hierarchical clustering
cluster_order <- hclust(dist(cluster_summary_mat))$labels[hclust(dist(cluster_summary_mat))$order] # use this if you want to order the clusters based on the hierarchical clustering
ct_order <- hclust(dist(t(cluster_summary_mat)))$labels[hclust(dist(t(cluster_summary_mat)))$order]
# Order Clusters in ascending order
# cluster_order1 <- c("CC1", "CC2", "CC3", "CC4", "CC5", "CC6", "CC7", "CC8", "CC9", "CC10")
# Wilcoxon test for characteristic cell types
run_wilcox_up <- function(prop_data) {
prop_data_group <- prop_data[["CompositionCluster_CC"]] %>% unique() %>% set_names()
map(prop_data_group, function(g) {
test_data <- prop_data %>%
mutate(test_group = ifelse(CompositionCluster_CC == g, "target", "rest")) %>%
mutate(test_group = factor(test_group, levels = c("target", "rest")))
wilcox.test(median_ct_prop ~ test_group, data = test_data, alternative = "greater") %>%
broom::tidy()
}) %>% enframe("CompositionCluster_CC") %>% unnest()
}
wilcoxon_res <- cluster_summary_pat %>%
ungroup() %>%
group_by(cell_type) %>%
nest() %>%
mutate(wres = map(data, run_wilcox_up)) %>%
dplyr::select(wres) %>%
unnest() %>%
ungroup() %>%
mutate(p_corr = p.adjust(p.value)) %>%
mutate(significant = ifelse(p_corr <= 0.15, "*", ""))
#### Save the summary statistics
# give the path to save the summary statistics
file_path_cluster_summ <- here::here(config$data_interim, "summary_of_clusters.txt")
file_path_wilcox_res <- here::here(config$data_interim, ? "wilcoxon_res_cells_clusters.txt")
# Save the summary statistics
write.table(cluster_summary_pat, file = file_path_cluster_summ, col.names = TRUE, row.names = FALSE, quote = FALSE, sep = "\t")
write.table(wilcoxon_res, file = file_path_wilcox_res, col.names = TRUE, row.names = FALSE, quote = FALSE, sep = "\t")
#### Plot the summary statistics
# Plotting mean ct prop and barplots
mean_ct_prop_plt <- cluster_summary %>%
left_join(wilcoxon_res, by = c("CompositionCluster_CC", "cell_type")) %>%
mutate(cell_type = factor(cell_type, levels = ct_order), CompositionCluster_CC = factor(CompositionCluster_CC, levels = cluster_order)) %>%
ungroup() %>%
group_by(cell_type) %>%
mutate(scaled_pat_median = (patient_median_ct_prop - mean(patient_median_ct_prop)) / sd(patient_median_ct_prop)) %>%
ungroup() %>%
ggplot(aes(x = cell_type, y = CompositionCluster_CC, fill = scaled_pat_median)) +
geom_tile(color = "black") +
geom_text(aes(label = significant)) +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5, size = 12), legend.position = "bottom", plot.margin = unit(c(0, 0, 0, 0), "cm"), axis.text.y = element_text(size = 12)) +
scale_fill_gradient2()
cluster_counts <- cluster_info %>%
dplyr::select_at(c("row_id", "CompositionCluster_CC")) %>%
group_by(CompositionCluster_CC) %>%
summarize(nspots = length(CompositionCluster_CC)) %>%
mutate(prop_spots = nspots / sum(nspots))
file_path_cluster_prop_summ <- here::here(config$data_interim, "cluster_prop_summary.csv")
write_csv(cluster_counts, file_path_cluster_prop_summ)
#barplots for cluster counts
barplts <- cluster_counts %>%
mutate(CompositionCluster_CC = factor(CompositionCluster_CC, levels = cluster_order)) %>%
ggplot(aes(y = CompositionCluster_CC, x = prop_spots)) +
geom_bar(stat = "identity") +
theme_classic() + ylab("") +
theme(axis.text.y = element_blank(), plot.margin = unit(c(0, 0, 0, 0), "cm"), axis.text.x = element_text(size = 12))
cluster_summary_plt <- cowplot::plot_grid(mean_ct_prop_plt, barplts, align = "hv", axis = "tb") # use if barplots are needed to show the spot counts otherwise directly use mean_ct_prop_plt for the plot
#### plot the summary clusters
pdf_path_summ_clust <- here::here(config$plots, "wilcox_summary_clusters.pdf")
pdf(pdf_path_summ_clust, width = 20, height = 10)
plot(cluster_summary_plt)
dev.off()
#box plot for median ct prop
pdf_path_boxplot <- here::here(config$plots, "wilcox_bboxplot_median_ct_prop.pdf")
plt <- cluster_summary_pat %>%
ggplot(aes(x = CompositionCluster_CC, y = median_ct_prop)) +
geom_boxplot() +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
facet_wrap(. ~ cell_type, ncol = 3, scales = "free_y")
pdf(pdf_path_boxplot, width = 20, height = 10)
plot(plt)
dev.off()
生活很好,有你更好