作者唯笙,Evil Genius~~~
在多細(xì)胞生物中,細(xì)胞通過與其他細(xì)胞的交流來協(xié)調(diào)從早期發(fā)育到組織和器官成熟的各個(gè)方面找默。當(dāng)它們不能正常交流時(shí)艇劫,疾病就會(huì)發(fā)生。在互作過程中惩激,由細(xì)胞表達(dá)的配體結(jié)合到同源受體上店煞,同源受體通過接收細(xì)胞和信號(hào)識(shí)別從配體細(xì)胞傳輸?shù)浇邮占?xì)胞。盡管生物技術(shù)手段有了快速的發(fā)展风钻,但對(duì)細(xì)胞間互作的全面了解仍然需要大量的研究顷蟀。因此,通過系統(tǒng)推斷由受體介導(dǎo)的細(xì)胞間通信已成為研究重點(diǎn)骡技。特別是腫瘤的形成與腫瘤細(xì)胞鸣个、免疫細(xì)胞和細(xì)胞外基質(zhì)的生態(tài)進(jìn)化密切相關(guān),腫瘤細(xì)胞可通過分泌因子重編程腫瘤微環(huán)境(Tumor MicroEnvironment, TME)布朦,將抗腫瘤細(xì)胞轉(zhuǎn)化為腫瘤支持因子囤萤。TME包括多種細(xì)胞類型,包括惡性細(xì)胞是趴、免疫細(xì)胞和基質(zhì)細(xì)胞涛舍。它是腫瘤進(jìn)展和免疫逃避的重要機(jī)制。此外唆途,腫瘤細(xì)胞與正常細(xì)胞之間的交流會(huì)導(dǎo)致腫瘤的發(fā)生富雅、惡化和轉(zhuǎn)移。多種癌癥行為緊密地與癌細(xì)胞之間以及癌細(xì)胞與間細(xì)胞之間的交叉聯(lián)系在一起肛搬。因此吹榴,捕獲腫瘤中潛在的細(xì)胞間交流至關(guān)重要。
推斷細(xì)胞互作的主要思路
結(jié)合單細(xì)胞滚婉、空間和配受體庫數(shù)據(jù),研究互作主要包括以下幾個(gè)步驟:
一帅刀、細(xì)胞的表達(dá)譜让腹。通過scrna序列數(shù)據(jù)對(duì)細(xì)胞進(jìn)行研究远剩,以評(píng)估所有基因的表達(dá)水平。
二骇窍、基因表達(dá)矩陣的構(gòu)建瓜晤。基因表達(dá)矩陣是根據(jù)基因在不同細(xì)胞中的轉(zhuǎn)錄數(shù)據(jù)構(gòu)建的腹纳。
三痢掠、參與細(xì)胞-細(xì)胞通信的相互作用蛋白(例如,配體和受體之間的相互作用)嘲恍,可以從數(shù)據(jù)源中獲得足画。
四、基因篩查佃牛,與相互作用的蛋白質(zhì)相關(guān)的基因仍然保留在上述基因表達(dá)矩陣中淹辞。
五、LRI分?jǐn)?shù)計(jì)算俘侠。基因表達(dá)值被用作計(jì)算調(diào)節(jié)兩種細(xì)胞類型的配體-受體對(duì)的相互作用分?jǐn)?shù)的輸入象缀。
六、細(xì)胞間通信推斷爷速。來自所有介導(dǎo)兩種細(xì)胞類型的LRIs的交互得分進(jìn)行計(jì)算央星,以獲得兩種細(xì)胞類型之間互作的總體狀態(tài)。
七惫东、可視化莉给。可視化工具被用來對(duì)細(xì)胞類型和細(xì)胞之間的通信評(píng)分進(jìn)行交叉預(yù)估。
配受體數(shù)據(jù)庫
從scRNA-seq數(shù)據(jù)重建細(xì)胞-細(xì)胞通信依賴于基因的共表達(dá)凿蒜,其中給定配受體對(duì)中的兩個(gè)基因分別來自兩種細(xì)胞類型和相互作用的細(xì)胞禁谦。應(yīng)用于細(xì)胞-細(xì)胞通信推理的主要一類基因來自于觀察到的配體及其同源受體。下表列舉了已知的配受體數(shù)據(jù)庫废封,包括配體數(shù)量州泊、受體數(shù)量、flris數(shù)量漂洋、數(shù)據(jù)庫和鏈接遥皂。
Table1.Known ligand–receptor interaction databases
Database | Ligand | Receptor | LRI | URL |
---|---|---|---|---|
CellPhoneDB | 609 | 587 | 1396 | https://github.com/Teichlab/cellphonedb |
SingleCellSignalR | 807 | 750 | 3251 | https://github.com/SCA-IRCM |
ICELLNET | 326 | 223 | 752 | https://github.com/soumelis-lab/ICELLNET |
NATMI | 829 | 690 | 2293 | https://github.com/forrest-lab/NATMI/ |
CellTalkDB | 1885 | 3131 | 3398(human) | http://tcm.zju.edu.cn/celltalkdb |
CellTalkDB | 1809 | 4152 | 2033(mouse) | http://tcm.zju.edu.cn/celltalkdb |
Omnipath | 1758 | 6837 | 14348 | https://archive.omnipathdb.org/omnipath_webservice:intercell_latest.tsv |
可視化的工具
已經(jīng)開發(fā)出各種可視化工具來分析細(xì)胞與細(xì)胞之間的通訊,利用這些工具可以更生動(dòng)地描述細(xì)胞間的通訊刽漂。下表列舉了經(jīng)典的可視化方法演训。
Table2.Visualization tools of cell–cell communication
Tool | Function | Link |
---|---|---|
CellCall | Heatmap,Circos plot,Sankey plot,bubble plot,TFenrichment plot,ridge plot | https://github.com/ShellyCoder/cellcall |
CellChat | Hierarchical plot,circle plot,bubble plot,violin plot,alluvial plot | https://github.com/sqjin/CellChat |
NATMI | Heatmap,network graph,circosviews | https://github.com/asrhou/NATMI |
iTALK | Network plot,Circos plot,errorbar plot | https://github.com/kentnf/iTALK |
CellPhoneDB | Heatmap,dotplot,violinplot | https://www.cellphonedb.org |
NicheNet | Heatmap | https://github.com/saeyslab/nichenetr |
SingleCellSignalR | Small box plot,tabular plot,t-SNE plot,Circular plot,joined and separated expression plot | https://github.com/SCA-IRCM |
細(xì)胞通訊評(píng)分策略
聚焦于配體-受體共表達(dá)模式,細(xì)胞通訊評(píng)分可以結(jié)合已知的LRIs和單細(xì)胞轉(zhuǎn)錄組數(shù)據(jù)進(jìn)行量化贝咙。經(jīng)典的細(xì)胞通訊評(píng)分策略包括基于表達(dá)閾值的方法样悟、基于豐度表達(dá)的方法、基于歸一化表達(dá)的方法、基于特異性表達(dá)的方法窟她、基于總表達(dá)的方法陈症、基于正則化表達(dá)的方法和基于幾何均值的方法。
給定配體i和受體j之間的LRIij震糖,設(shè)li/rj分別表示來自單細(xì)胞轉(zhuǎn)錄組學(xué)表達(dá)配體i和受體j的細(xì)胞類型录肯。LRIij介導(dǎo)的兩種細(xì)胞類型ct1和ct2之間的交流評(píng)分可以根據(jù)以下評(píng)分策略計(jì)算。
一吊说、Expression thresholding-based scoring approach:ct1表達(dá)配體的value和ct2表達(dá)受體的value大于某個(gè)閾值论咏。
二、Expression product-based scoring approach :衡量細(xì)胞通訊基于細(xì)胞表達(dá)配體和受體的表達(dá)豐度颁井,豐度越高厅贪,通訊可能性越大。
三蚤蔓、Expression normalization-based scoring approach: 首先對(duì)配受體的表達(dá)值進(jìn)行歸一化卦溢,基于歸一化的值衡量細(xì)胞通訊。
四秀又、Specificity expression-based scoring approach :基于特異性表達(dá)的評(píng)分方法考慮ct1/ct2中配體i/受體j的算術(shù)平均表達(dá)值和所有細(xì)胞中配體i/受體j的平均表達(dá)值之和.
五单寂、Total expression-based scoring approach :研究LRIi,j介導(dǎo)的ct1/ct2中配體i/j的表達(dá)和吐辙。
六宣决、Regularized product-based scoring approach :研究LRIi,j介導(dǎo)的ct1/ct2中配體i/j的算術(shù)平均表達(dá)量昏苏。
單細(xì)胞數(shù)據(jù)目前通常采用的方法則是Expression normalization-based scoring approach尊沸,但是在之前進(jìn)行了一定的閾值選擇。
細(xì)胞通訊的計(jì)算方法
在TMEs中贤惯,不同類型的細(xì)胞通過配體-受體介導(dǎo)相互通信洼专。針對(duì)分泌配體及其同源細(xì)胞表面受體的共表達(dá)模式,細(xì)胞-細(xì)胞通信預(yù)測(cè)的計(jì)算方法不斷得到發(fā)展孵构。這些方法主要包括基于網(wǎng)絡(luò)的方法屁商,基于機(jī)器學(xué)習(xí)的方法,基于空間信息的方法和其他方法颈墅。下表列出了一些代表性的細(xì)胞-細(xì)胞通信推斷方法蜡镶,案例研究和鏈接。
Table3.Input,case study and code of inter cellular communication inference methods
Method | Tool | Input data | Casestudy | Code |
---|---|---|---|---|
Network | CCCExplorer | scRNA-seq;LRIs | Human lung cancer | http://209.160.41.231/u54/CCCExplorer |
NicheNet | scRNA-seq;LRIs;Signaling and protein-protein interactions gene regulatory interactions | HNSCC | https://github.com/saeyslab/nichenetr | |
NATMI | scRNA-seq;LRIs | Mouse heart | https://github.com/forrest-lab/NATMI | |
scConnect | scRNA-seq;LRIs | mousebrain;human melanoma | https://github.com/JonETJakobsson/scConnect | |
Machine learning | PyMINEr | scRNA-seq;LRI;cell-type enrichment;SNP genome-wide associations;protein-DNA interactions | human pancreatic islet | https://www.sciencescott.com/pyminer |
SoptSC | scRNA-seq;LRIs | Human and mouse early embryonic development;epidermal regeneration;hematopoiesis | https://github.com/WangShuxiong/SoptSC | |
SingleCellsignalR | scRNA-seq;LRIs;GOCC annotation;pathways | Mouse epidermis;wound | https://github.com/SCA-IRCM | |
RCA-CCA | scRNA-seq;bulk RNA-seq;SMC samples;whole-genome sequencing | Human colorectal cancer | https://github.com/SGI-CRC/scRNA-seq | |
Spatial information | CellTalker | scRNA-seq;LRIs;spatial organization;spatial images | HNSCC | https://github.com/arc85/celltalker |
SpaOTsc | scRNA-seq;LRIs;spatial transcriptome | Mouse brain | https://github.com/zcang/SpaOTsc | |
histoCAT | scRNA-seq;spatial images | Human breast cancer | https://github.com/BodenmillerGroup/histoCAT | |
Giotto | scRNA-seq;LRIs;spatial transcriptome;spatial images | Mouse brain | http://spatial.rc.fas.harvard.edu | |
squidpy | Spatial transcriptome;LRIs;spatial images | Coronal mouse brain | https://github.com/theislab/squidpy | |
Others | CellCall | scRNA-seq;LRIs;transcription factor | Human testicular cells | https://github.com/ShellyCoder/cellcall |
CellPhoneDB | Transcription factor scRNA-seq;LRIs | Murine melanoma | https://github.com/Teichlab/cellphonedb |
一恤筛、Network-based cell–cell communication prediction methods :基于網(wǎng)絡(luò)的細(xì)胞-細(xì)胞通信預(yù)測(cè)方法將細(xì)胞類型之間的相互作用表示為一個(gè)網(wǎng)絡(luò)官还,其中每個(gè)細(xì)胞類型被表示為node,一個(gè)定向細(xì)胞-細(xì)胞通訊被表示為edge毒坛。方法包括三個(gè)主要步驟:獲取scRNA-seq和LRI數(shù)據(jù)庫望伦,基于網(wǎng)絡(luò)算法計(jì)算介導(dǎo)兩種細(xì)胞類型的每個(gè)配體-受體對(duì)的相互作用評(píng)分林说,通過識(shí)別的LRI評(píng)分調(diào)查潛在的細(xì)胞間通訊。
二屯伞、Machine learning-based cell–cell communication inference methods :基于機(jī)器學(xué)習(xí)的細(xì)胞-細(xì)胞通信預(yù)測(cè)方法通常包括四個(gè)主要步驟:預(yù)處理scRNA-seq和LRI數(shù)據(jù)述么,基于聚類算法識(shí)別細(xì)胞類型,對(duì)調(diào)節(jié)兩種細(xì)胞類型的配體-受體對(duì)評(píng)分愕掏,并基于識(shí)別的配體-受體對(duì)評(píng)分推斷兩種細(xì)胞類型之間的通訊。
三顶伞、Spatial information-based cell–cell communication inference methods:基于空間信息的細(xì)胞間通信推斷方法充分表征了空間定位信息和空間近端細(xì)胞類型饵撑,基于scRNA-seq數(shù)據(jù)、空間轉(zhuǎn)錄組數(shù)據(jù)和圖像唆貌,發(fā)現(xiàn)不同細(xì)胞類型之間的信號(hào)crosstalk滑潘。
基于計(jì)算的細(xì)胞間通信識(shí)別方法主要包括數(shù)據(jù)獲取和預(yù)處理、細(xì)胞類型識(shí)別锨咙、兩種細(xì)胞類型的配體-受體對(duì)評(píng)分以及基于配體-受體對(duì)評(píng)分的細(xì)胞-細(xì)胞間通信預(yù)測(cè)四個(gè)步驟语卤。計(jì)算方法顯著促進(jìn)了配體受體介導(dǎo)的細(xì)胞間通信推理。然而酪刀,計(jì)算工具不能探測(cè)配體和受體之間潛在的相互作用粹舵。基于機(jī)器學(xué)習(xí)的方法需要確定聚類的數(shù)量骂倘,同時(shí)解決negative LRIs缺乏的問題眼滤。基于空間信息的方法需要對(duì)不同的組學(xué)數(shù)據(jù)進(jìn)行聯(lián)合分析历涝。下表總結(jié)了各種通訊方法的優(yōu)劣勢(shì)诅需。
Table5.Advantages and disadvantages of cell–cell communication inference methods
Method | Tool | Advantages | Disadvantages |
---|---|---|---|
Network | NicheNet | Integrates multiple data sources;multiple species | Neglects that many receptors function as multi-subunit complexes |
NATMI | Uses the most complete LRI list;multiple species | Limited to original cellular annotations and dropouts;fail to model heterodimerization | |
CCCExplorer | Integrates multicellular transcriptome-and interactome-signalling data | Lack of a reasonably complete graphic characterization of microenvironmental signalling interaction network | |
Machine learning | SoptSC | Combines target genes of pathways and their directionality | Requires curation of LRIs and their downstream pathways |
SingleCellsignalR | Models downstream signalling;multiple species | Requires downstream pathways | |
RCA-CCA | Reveals the diversity and dynamic relationships between different celltypes | Fails to define EMT patterns | |
Spatial information | CellTalker | Consider sspatial context | Fail to consider different subunits of ligands or receptors |
SpaOTsc | Combines structured and unbalanced optimal transport for investigating spatial properties of scRNA-seq data | Requires downstream pathways;lack of information involved in the spatial arrangement of specific celltypes | |
Giotto | Combines spatial transcriptomic data and image data | Only utilizes spatial coordinates and neglects gene expression and tissue-image information | |
Squidpy | Combines the spatial graph and the tissue image | Only utilizes spatial coordinates and neglects gene expression and tissue-image information | |
Others | CellCall | Combines transcription factors and target genes in a particular pathway | Additional false positives |
CellPhoneDB | Considers subunit architectures of ligands and receptors | Limited to acomplete LRI list;Fails to consider the spatial proximity of cells |
目前推斷細(xì)胞通訊需要解決的問題
一、多組學(xué)數(shù)據(jù)的聯(lián)合分析荧库,其中主要是單細(xì)胞堰塌、空間和蛋白組組學(xué)數(shù)據(jù)。
二分衫、細(xì)胞類型的識(shí)別:細(xì)胞類型的識(shí)別是一切分析的基礎(chǔ)场刑,無論是單細(xì)胞還是空間數(shù)據(jù)都需要研究是什么細(xì)胞類型之間的互作在起作用。
三丐箩、數(shù)據(jù)庫的豐富:目前配受體數(shù)據(jù)庫還在不斷完善摇邦。
四、空間生態(tài)位:細(xì)胞類型之間的通訊不是所有細(xì)胞都參與屎勘,而是空間臨近位置的細(xì)胞類型進(jìn)行廣泛的互作施籍。
寫在后面
腫瘤生態(tài)系統(tǒng)包含各種細(xì)胞類型,它們可以通過配體和受體之間的相互作用相互交流概漱。瞄準(zhǔn)這些相互作用有助于癌癥的診斷和治療丑慎。到目前為止,已經(jīng)開發(fā)了幾種細(xì)胞-細(xì)胞通信量化算法來說明腫瘤中發(fā)生了哪些LRIs以及這些LRIs如何影響結(jié)果。在這里探討了基于scRNA-seq竿裂、空間轉(zhuǎn)錄組和LRI數(shù)據(jù)的細(xì)胞間通信推理的研究進(jìn)展玉吁。介紹了細(xì)胞-細(xì)胞通信預(yù)測(cè)的pipeline,獲取LRI數(shù)據(jù)庫和可視化工具腻异。并且強(qiáng)調(diào)經(jīng)典的細(xì)胞間通信評(píng)分策略进副,分析了代表性的細(xì)胞間通信識(shí)別方法。
生活很好悔常,有你更好影斑,上傳到百度文庫的抄襲者可恥